

# GP3 - Residential Development Pla nning Proposal 

Comprehensive Tra nsport Impact Assessment

Prepared for:

# Mivac Homes (NSW) Pty Ltd 

14 April 2022
The Transport Planning Partnership

# GP3 - Residential Development Planning Proposal 

## Comprehensive Transport Impact Assessment

Client: Mivac Homes (NSW) Pty Ltd
Version: 04
Date: 14 April 2022
TTPP Reference: 17285

Quality Record

| Version | Date | Prepared by | Reviewed by | Approved by | Signature |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 02 | $7 / 4 / 2022$ | Clinton Cheung, <br> Charbel Hanna, <br> Doris Lee | Wayne Johnson | Wayne Johnson | - |
| 03 | $11 / 4 / 2022$ | Clinton Cheung, <br> Doris Lee | Wayne Johnson | Wayne Johnson | - |
| 04 | $14 / 4 / 2022$ | Doris Lee | Wayne Johnson | Wayne Johnson | Wayne Johnson |

transport planning

## Table of Contents

1 Introduction ..... 1
1.1 Background ..... 1
1.2 Overview of Proposed Development and Vehicular Accesses ..... 1
1.3 Consultation with TFNSW and Penrith City Council. ..... 3
1.4 Purpose of this Report. ..... 4
1.5 Reference ..... 4
2 Existing Transport Context ..... 6
2.1 Site Location ..... 6
2.2 Land Use ..... 8
2.3 Road Network ..... 8
2.4 The Northem Road Upgrade ..... 9
2.5 Public Transport ..... 12
2.6 Pedestrian and Cyclist Facilities. ..... 12
2.7 Travel Mode Share ..... 13
2.8 Travel Pattems ..... 16
2.9 Traffic Volumes ..... 16
3 NSW Govemment Strategic Future Planning Policies ..... 19
3.1 Future Tra nsport Strategy 2056 ..... 19
3.2 Greater Sydney Regional Plan 2018. ..... 21
3.3 Westem City District Plan (March 2018) - Greater Sydney Commission ..... 22
3.4 Ministerial Direction 3.4 Integrating Land Use and Transport. ..... 24
3.5 Sydney's 30-Minute Centres ..... 25
3.6 Westem Sydney City Deal. ..... 27
3.7 Westem Sydney Place-based Infrastructure Compact (PIC) ..... 27
4 Future Transport Context ..... 29
4.1 Westem Sydney Intemational Airport ..... 29
4.2 Westem Sydney Infrastructure Plan ..... 29
4.3 Strategic Traffic Forecasting Model ..... 29
4.4 Baseline Traffic Demand Forecast ..... 30
4.5 Public Transport ..... 30
4.5.1 Future Bus Network ..... 30
4.5.2 Sydney Metro Network ..... 33
4.6 Pedestrian and Cyclist Facilities. ..... 35
5 Proposed Development ..... 36
transport planning
5.1 Proposed Yield ..... 36
5.2 Access Roads ..... 36
5.3 Intemal Road Hierarchy ..... 37
5.3.1 CollectorRoads ..... 38
5.3.2 Entry Boulevard ..... 38
5.3.3 Minor Local Roads. ..... 38
5.4 Local Area Traffic Management ..... 38
5.5 Pedestrian and Cyclist Facilities. ..... 39
5.5.1 Design Guides. ..... 40
5.5.2 Active Transport Plan ..... 40
5.5.3 Path Width ..... 42
5.5.4 Pedestrian and Cyclist Movements ..... 44
5.5.5 C rossing Facilities ..... 45
5.5.6 Warrants ..... 45
5.5.7 Desire Lines. ..... 48
6 Parking Control. ..... 50
6.1 CarParking ..... 50
6.2 Accessible Parking ..... 51
6.3 Bicycle and Motorcycle Parking ..... 51
7 Traffic Impact Assessment. ..... 52
7.1 Consultation ..... 52
7.2 Traffic Generation ..... 52
7.2.1 Low Density Dwellings ..... 52
7.2.2 Medium Density Dwellings ..... 52
7.2.3 Fonzie Flats and Shop-top Housings. ..... 52
7.2.4 Retail ..... 53
7.2.5 Primary School ..... 53
7.2.6 Total Traffic Generation Summa ry ..... 55
7.3 Traffic Distribution ..... 56
7.3.1 Residential Trips ..... 56
7.3.2 Retail Trips. ..... 57
7.3.3 Prima ry School ..... 57
7.3.4 All trips ..... 59
7.4 Assessment Scena rios. ..... 61
7.5 Future Traffic Volumes ..... 61
7.6 Extemal Road Network - Existing Intersection La yout. ..... 65
transport planning
7.7 Extemal Road Intersection Capacity Analysis ..... 67
7.8 Extemal Road Level of Service ..... 69
7.9 Future Road Network (with Intersection Upgrade) ..... 73
7.9.1 Recommended Intersection Upgrade Measures (Year 2036) ..... 73
7.9.2 Operating Conditions ..... 77
7.10 Intemal Road Network Intersection Layout. ..... 77
7.11 Intemal Road Intersection Ca pacity Analysis ..... 79
7.11.1 Network Peak Hours ..... 79
7.11.2Sensitivity Test (School Peak Hours) ..... 79
7.12 Intemal Road Level of Service ..... 81
8 Travel Demand Management ..... 85
8.1 Target Mode Share ..... 85
8.2 Public Transport ..... 87
8.2.1 Future Sydney Metro and Rapid Bus Services. ..... 87
8.2.2 Proposed Re-Routing of Bus Service 794 ..... 87
8.2.3 Additional Servic es for Bus Service 789 ..... 88
8.2.4 Impact on Bus Servic es ..... 88
8.3 Active Transport ..... 89
8.4 G reen Travel Plan. ..... 91
8.4.1 What isa Green Travel Plan (GTP)? ..... 91
8.4.2 Objectives and Strategies. ..... 92
9 Summary and Conclusions ..... 93
Tables
Table 2.1: The Northem Road Upgrade ..... 9
Table 2.2: Existing Resident Travel Mode Splits. ..... 14
Table 2.3: Existing Employee Travel Mode Splits ..... 15
Ta ble 2.4: ABS C ensus 2016 Travel Pattems for Residents ..... 16
Table 2.5: SCATS Traffic Volume Comparison ..... 17
Table 4.1: Future Baseline Traffic Volumes on The Northem Road (without Development Traffic) ..... 30
Table 5.1: GP3 Development Yield ..... 36
Table 5.2: Austroads and TFNSW Bic yc le Guidelines ..... 40
Table 6.1: Penrith DCP Car Parking Requirements. ..... 50
transport planning
Table 6.2: Bicycle Parking Requirements ..... 51
Table 7.1: Traffic Generation Potential ..... 56
Table 7.2: STFM Traffic Distribution for Resid ential Trips (Year 2036) ..... 56
Table 7.3: Traffic Distribution for Retail Trips (Year 2036) ..... 57
Table 7.4: School Trips (70\% Catc hment within GP3) ..... 59
Table 7.5: Year 2026 and Year 2036 Peak Hour Intersection Operating Conditions ..... 68
Table 7.6: Mid-Block Level of Service Definitions and Criteria for Multi-Lane Road ..... 69
Table 7.7: Year 2026 Peak Hour Mid-Block Operating Performance Summary - No Road Upgrade Improvement Works ..... 71
Table 7.8: Year 2036 Peak Hour Mid-Block Operating Performance Summary ..... 72
Table 7.9: Year 2036 Peak Hour Intersection Operating Conditions (with Intersection Upgrades) ..... 77
Table 7.10: Year 2036 Peak Hour Intersection Operating Conditions - Intemal Intersections. ..... 79
Table 7.11: Traffic Volume during Road Network Peak Hours and School Peak Hours ..... 80
Table 7.12: Year 2036 School Peak Hour Intersection Operating Conditions- Intersection 13.81
Table 7.13: Year 2036 Peak Hour Mid-Block Operating Performance - Intemal Roads ..... 84
Table 8.1: Travel Mode Targets ..... 86
Table 8.2: Mode Shift Target Impacts on Trip Generation ..... 89
Figures
Figure 1.1: Site Layout a nd Access Points. ..... 2
Figure 2.1: Site Location and its Surrounding Environs ..... 7
Figure 2.2: Land Use ..... 8
Figure 2.3: Extent of The Northem Road Upgrade ..... 10
Figure 2.4: Existing BusRoute 789 and Bus Route 794 ..... 12
Figure 2.5: Existing Cycleway Network ..... 13
Figure 3.1: G reater Future Transport Comidors ..... 20
Figure 3.2: Greater Sydney Principal Bic ycle Network 2056 ..... 21
Figure 3.3: G reater Sydney Structure Plan 2056 - The Three Cities ..... 22
Figure 3.4: Westem City District Plan ..... 23
Figure 3.5: Available Modal Choices in Context of the Site Location ..... 25
Figure 3.6: Greater Sydney's 30-minute cities. ..... 26
Figure 3.7: Initial PIC Area and Site Location ..... 28
Figure 4.1: Proposed BusRoute a nd Bus Stops within GP3 ..... 32
Figure 4.2: Sydney Metro Stationsa long the Proposed Westem Sydney Aiport Line. ..... 34
Figure 5.1: Hierarchy of Intemal Roads ..... 37
Figure 5.2: Austroads Footpath Requirement ..... 40
Figure 5.3: Proposed GP3 Active Transport Plan ..... 41
Figure 5.4: Existing Footpath a nd Shared Use Path Widths in GP2. ..... 43
Figure 5.5: Austroads Path Widths for a 50/50 Direction Split ..... 43
Figure 5.6: Primary and Second ary Movement Comidors for Active Travel. ..... 44
Figure 5.7: Proposed Pedestrian/ Cyclist Refuge on Entry Boulevard ..... 48
Figure 5.8: Proposed Locations of Crossing Facilities. ..... 49
Figure 7.1: Rolling Hourly Tra ffic Volumes Associated with Surveyors Creek Primary School. ..... 54
Figure 7.2: Existing Catchment of Nearby Schoolsand Indicative Catchment of Future GP2 School ..... 58
Figure 7.3: Residential, Retail and School Trips (Year 2036) ..... 60
Figure 7.4: Year 2026 Ba seline Traffic Volumes (without Development Traffic) ..... 62
Figure 7.5: Year 2036 Ba seline Traffic Volumes (without Development Traffic) ..... 63
Figure 7.6: Year 2036 Future Traffic Volumes (with Development Traffic) ..... 64
Figure 7.7: Existing Layout of The Northem Road and Bradley Street ..... 65
Figure 7.8: Existing Layout of The Northem Road and Entry Boulevard/DEOH Access. ..... 66
Figure 7.9: Existing Layout of The Northem Road and Chain-O-Ponds Road ..... 67
Figure 7.10: The Northem Road / Defence Establishment Orchard Hills/ Entry Bouleva rd Proposed Upgrades ..... 75
Figure 7.11: The Northem Road / Chain-O-PondsRoad Proposed Upgrades ..... 76
Figure 7.12: Proposed Intemal Intersection Control ..... 78
Figure 7.13: Year 2036 Traffic Volume at Intersection 13 during School AM and PM Peak Hours ..... 80
Figure 7.14: Typical Mid-block Capacities for Urban Roads with Intemupted Fows ..... 81
Figure 7.15: Intemal Road Names ..... 83
Figure 8.1: Connections to Active Transport Links. ..... 90

## APPENDICES

## A. SIDRA MODEШNG OUTPUT

B. RECOMMENDED INTERSECTION UPGRADES

## 1 Introduction

### 1.1 Background

A Planning Proposal waslodged with Penrith City Council in May 2018 and March 2020 seeking a mendment of the Penrith City Council 2010 Local Environmental Plan (LEP) to enable the extension of Glenmore Park for a mixed-use development on land located adja cent to The Northem Road, Mulgoa.

Following consulta tion with Transport for NSW (TfNSW) and Penrith City Council to appreciate the planning proposal requirements, this comprehensive traffic impact assessment (CTIA) has been prepared to identify the traffic a nd transport impacts of the subject development and to recommend a package of appropriate transport measures to help residents and workers to travel susta inably to/from the proposed development while incomorating targets for reducing private car use.

### 1.2 Overview of Proposed Development and Vehicular Accesses

The proposed resid ential development in GP3 is a n extension of GP2. Access to the subject site is proposed to be via the following roadsasshown in Figure 1.1:

- An entry boulevard asan extension of the westem leg to the intersection of The Northem Road with Defence Establishment Orchard Hills (DEOH) Access Road
- Three access points off the north side of Chain-O-PondsRoad
- A number of local roads to be extended south from GP2 to GP3. The primary access between GP2 and GP3 would be via Darug Avenue, Gunyah Drive and Riverflat Drive.

Figure 1.1: Site Layout and Access Points

transport planning

The proposed mixed-use development consists of the following la nd uses:

- 1,783 low density dwellings (including 81 la rge lots)
- 487 medium density dwellings
- 30 Fonzie flats (within medium density)
- 100 shop top dwellings
- $5,000 \mathrm{~m}^{2}$ G LFA mixed-use centre
- A primary school to accommodate up to 1,000 students a nd 70 staff.

A total of 2,400 dwellings a re scheduled to be fully developed by year 2036, with an initial 200 low density dwellingsto be developed by year 2026. The mixed-use centre is located on the south side of the proposed entry boulevard approximately 500 m west of The Northem Road, and is scheduled to be operational by year 2036.

School Infrastructure NSW (SINSW) advised that a primary school is required within the subject development, and estimated the projected enrolment to be upwardsof 670 students based on the proposed 2,400 dwelling yield. However, SINSW typically builds primary schools to a 1,000-student capacity. SINSW also specified a primary school with a 1,000-student capacity would generate an estimated 70 staff.

SINSW also advised that the specific catchment area forthe school would be determined on delivery, however, it is likely that approximately $70 \%$ of future students would be located within GP3.

The primary school would be located on the south side of the entry boulevard on the east side of the extended Riverflat Drive.

### 1.3 Consultation with TFNSW and Penrith City Council

Transport for NSW (TfNSW) and Penrith City Council provided comments to the planning proposal submitted in March 2020 requesting a comprehensive study be underta ken to appreciate the traffic and transport on the intemal and extemal road network.

The scope of work has been formulated based on discussions with a uthorities and fina lised in the TIPP proposed study methodology letter dated 18 O ctober 2021 in which both authorities made specific requirements on the CTIA.

The objective of the CTIA is to identify the road hierarchy impact a nd if a ny further infrastruc ture requirements are identified, in addition to The Northem Road upgrade, to support the planning proposal upon completion.

A detailed a ssessment of the intemal road network is required in tems of public transport and active transport connectivity, intemal intersection control and local a rea traffic management measures.

This comprehensive transport impact a ssessment ha sconsidered mea sures to a chieve the 30-minute city target assuch residents should be able to reach their nea rest metrop olitan and strategic centres within 30 minutes, seven daysa week, by public transport. This would reduce reliance on private vehicle trips to support this target.

During the consultation phase, both TfNSW and Council a greed on the traffic generation rates to be used for the proposed residential, mixed-use centre and school. The traffic impact is to be assessed using SIDRA modelling forthe a greed intersections a long The Northem Road, Chain-O-PondsRoad and intersections intemal to the mixeduse development.

### 1.4 Purpose of this Report

This report sets out our a ssessment of the antic ip a ted transport implic a tions of the Planning Proposal, including consideration of the following:

- the traffic generating characteristic sof the Planning Proposal
- suita bility of the proposed access a rrangements
- traffic and transport impact of the development proposal on the intemal and extemal road networks at the access pointsto/from the site
- a ny further infrastructure requirements in addition to The Northem Road upgrade, to support the Planning Proposal upon completion.

The study methodology has been customised in consultation with TfNSW and Council to address their specific requirements.

Traffic generation associated with the above development yield was assessed using Network SIDRA modelling software for the potential traffic impact on the surrounding extemal and intemal road networks.

### 1.5 Reference

In preparing this report, reference hasbeen made, but not limited to, the following:

- The Northem Road Upgrade (TfNSW)
- The Northem Road Upgrade Mersey Road to Glenmore Parkway, Environmental Impact Assessment (J a cobs, 15 May 2017 a nd December 2017)
- TFNSW Guide to Traffic Generating Developments, 2002
- TFNSW'sTrip Generation Surveys - NSW Small Suburban Shopping Centres Analysis Report (November 2018)
transport planning
- TfNSW's Trip Generation Surveys - Schools AnalysisReport (August 2014)
- Penrith City Council Development Control Plan Part E7 Glenmore Park
- Future Transport 2056 (NSW Govemment)
- Sydney's 30-minute Centres (G TA Consultants)
- Westem City District Plan (Greater Sydney Commission)
- Place-based Infrastructure Compact (PIC) program (Greater Sydney Commission)
- AustroadsGuide to Road Design Part 6A
- RMS Bicycle Guidelines
- NSW Cycleway Design Toolbox.
transport planning


## 2 Existing Transport Context

### 2.1 Site Location

The subject site is located on the west side of The Northem Road as highlighted in Figure 2.1. The site bordersadjacent residential properties to the north, The Northem Road to the east and rural properties to the south and Penrith Landfill Depot to the west.

The subject site comprisesthe following land parcels:, , Lot 3/DP1224642, Lot 701/DP1275647, Lot 18/DP244610, Lot 19/DP244610, Lot 25/DP244610, Lot 26/DP244610, Lot 27/DP244610, Lot 28/DP244610, Lot 29/DP244610, Lot 30/DP244610, , Lot 2/DP1240361, Lot 3/DP1240361 Lot 1/DP29081, Lot 2/29081, Lot 3/DP29081, Lot 4/29081, Lot 5/DP29081, Lot 6/DP29081, Lot 1/DP1088989, Lot 8/DP29081 and Lot 1/DP795841. The subject site has a total a rea of a pproximately 205 hectares.

Figure 2.1: Site Location and its Surrounding Environs


### 2.2 Land Use

Figure 2.2 shows the subject site is located on land currently zo ned RU2 Rural La ndscape, a nd C3 Enviro nmental Ma na gement und er the Penrith LEP 2010.

Figure 2.2: Land Use


### 2.3 Road Network

The Northem Road is a State Road with a north-south alignment connecting Narellan with Richmond. Approximately 36 km of The Northem Road has recently been upgraded to a dual ca miageway with a central median reserved forfuture road widening. The Northem Road generally provides three traffic lanes and a dedicated kerbside buslane in each direction north of Bradley Street, and two traffic lanes in each direction. Buslanes are provided at all traffic lights. Refer to Section 2.4 for further details. The Northem Road has posted speed limit of $80 \mathrm{~km} / \mathrm{h}$ between Glenmore Parkway and Elizabeth Drive.

Bradley Street is a collector road under the jurisdiction of Penrith City Council. Bradley Street is a two-lane undivided road with an east-west alignment connecting Glenmore Park with The Northem Road. The signalised intersection with The Northem Road has recently been upgraded aspart of The Northem Road upgrade works.

Defence Establishment Orchard Hills (DEOH) Access Road is a private road that providesaccess to DEOH from The Northem Road. Currently, a U-tum facility is provided on the westem approach to the intersection with The Northem Road. However, this would eventually be upgraded asan entry boulevard providing access to the proposed GP3 community.

Chain-O-Ponds Road is a rural collector road under the jurisdic tion of Pennith City Council. It is a two-lane undivided road that runs between The Northem Road and Kings Hill Road. Chain-O-Ponds Road has a posted speed limit of $70 \mathrm{~km} / \mathrm{hr}$. The signa lised intersection with The Northem Road has recently been upgraded aspart of The Northem Road upgrade works.

### 2.4 The Northem Road Upgrade

The Austra lian and NSW govemments have recently completed upgrading The Northem Road aspart of the $\$ 4.1$ billion Westem Sydney Infrastruc ture Plan to improve safety, increase road capacity and reduce travel times and congestion. The Northem Road upgrade between The Old Northem Road, Narellan and J amison Road, South Penrith covers about 36 km and includes access to the new Nancy Bird Walton Airport at Badgerys Creek and the growth area sof South West and Westem Sydney.

The upgrade wasdelivered in six sta ges as detailed in Table 2.1.
Table 2.1: The Northem Road Upgrade

| Stage | Section | Completed / Open to Traffic |
| :---: | :---: | :---: |
| Stage 1 | The Old Northem Road, Na rellan and Peter Brock Drive, Oran Park (3.3km) | April 2018 |
| Stage 2 | Peter Brock Drive, Oran Park and Mersey Road, Bringelly (11.3km) | December 2020 |
| Stage 3 | Mersey Road, Bringelly and Eaton Road, Luddenham ( 5.5 km ) | September 2020 |
| Stage 4 | Eaton Road, Luddenham and Littlefields Road, Luddenham (4.5km) | March 2021 |
| Stage 5 | Littlefields Road, Luddenham and Glenmore Parkway, Glenmore Park (6km) | December 2021 |
| Stage 6 | Glenmore Parkway, Glenmore Park and J a mison Road, South Penrith (4km) | May 2021 |

Source: TfNSW The Northem Road Upgrade Project Update (December 2021)
The upgrade works generally comprised road widening, intersection improvements and road realignment along 36 km of The Northem Road between J a mison Road in South Penrith and Peter Brock Drive in Oran Park as shown in Figure 2.3.

Figure 2.3: Extent of The Northem Road Upgrade


Source: IFNSW The Northem Road Upgrade Project Update (December 2021)
transport planning

Notably, The Northem Road adjacent to the proposed development site between LttlefieldsRoad to Glenmore Parkway (refer Figure 2.3) was upgraded and opened to traffic in December 2021 as part of the Stage 5 upgrade. Key features include:

- Three lanes in each direction with median and dedicated kerbside buslanes between Bradley Street and Glenmore Parkway
- Two lanes in each direction south of Bradley Street, with a wide median allowing for widening to six la nes, when required
- Three new traffic lights at Littlefields Road, Kings Hill Road and Chain-O-Ponds Road
- Two new U-tum baysand two new roundabouts for ease of access
- Access to Defence Establishment Orchard Hills with traffic lights and a U-tum facility located on the westem leg of the intersection to a ccommodate traffic accessing existing rural properties along The Northem Road as right tum movements across the central median will not be permitted. It is noted that the westem leg is being proposed to be upgraded to provide directaccess to the subject development from The Northem Road
- Upgraded intersection at Bradley Street with U-tum facility
- Buslanes at all traffic lights
- A 3m wide off-road shared pedestria $n$ a nd cyclist path.

The upgraded section between J a mison Road and Bradley Street wasopened to traffic in May 2021. Key features involve:

- Three lanesin each direction with a median and dedicated kerbside buslanes between Glenmore Parkway and Smith Street
- Upgraded interchange with the M4 Motorway including a new wider bridge to replace the existing bridge
- New traffic lights and tuming lanes at nine intersections including repla cing the roundabout at Glenmore Parkway
- Off-road shared pedestrian and cyclist paths on both the eastem a nd westem sides.

The remaining road sections between J a mison Road in South Penrith and Peter Brock Drive in Oran Park were also upgraded and opened to traffic asshown in Figure 2.3.

### 2.5 Public Transport

Public transport within close proximity of the subject site is provided exclusively by bus services.

The Northem Road within the vicinity of the site is serviced by Bus Route 789 that links Luddenham with Penrith. The nearest bus stopsalong The Northem Road are located adjacent to the intersections with Entry Boulevard/Defence Establishment Orchard Hills and Chain-O-Ponds Road. This bus service operatestwice a day on weekdays during the peak periods. No services are provided on weekends.

Furthermore, the existing bus route 794 currently services Glenmore Park providing servicesbetween Penrith to Glenmore Park via South Penrith. This bus route is proposed to be re-routed to service the new GP3 development. Further details on the future route are disc ussed in Section 4.5.1.2 and Section 8.2.2.

Figure 2.4: Existing Bus Route 789 and Bus Route 794


Source: Busways (last a c cessed on 12 J a nuary 2022)

### 2.6 Pedestria n and Cyc list Facilities

Prior to the Northem Road Upgrade there was limited pedestrian and cycling infrastructure provided along The Northem Road, Chain-O-Ponds Road and Bradley

Street. Upon completion of the upgrades, it now providesa 3m-wide off-road sha red pedestrian and cyclist path a long the west side of The Northem Road. Additionally, signalised pedestrian crossings a re provided on all approaches of the upgraded signalised intersections for access to the busstopslocated on the east side of the road.

Sealed footpaths are provided along Glenmore Parkway and Bradley Street upon entry to the existing G lenmore Park resid ential a rea.

The existing cycleway network within the a rea is presented in Figure 2.5, noting that a new shared use path is currently available on the west side of The Northem Road following the recent upgrade but it is not shown on the base map in Figure 2.5.

Figure 2.5: Existing Cyc leway Network


Source: OpenStreetMaps(last a c cessed 12 J a nuary 2022)

There are a number of existing shared use paths in GP2 adjacent to the proposed GP3 development. The proposed shared use paths will connect with the existing facilities in GP2 and The Northem Road. Refer to Section 5.5 for further disc ussion.

### 2.7 Travel Mode Share

Review of the Census Method to Travel to Work (MTW) 2016 data has been und ertaken to appreciate the mode of transport for GP1 and GP2. It is noted that since the subject site (GP3) is located immediately south of GP2, it is expected that the transport mode
would be similar to GP1 and GP2, except that it is located further a way from Penrith Tra in Station. Furthemore, a substantial proportion of the GP2 development was already developed and occupied in 2016 (censusyear).

The nearest tra in station (Penrith Station) is located between 3-6km north of GP1 and 2. As such, residents (specific ally those which travel to work by train) within the existing Glenmore Park would require at least one other mode of transport (i.e. via bus orcar) to reach Pennth Station. It is highly unlikely that residents would walk from Glenmore Park Sta ge 1 and 2 to Penrith Station noting the walking distance and the limited pedestrian connectivity a cross the M4 Motorway - the only pedestria $n$ facilities a re provided at the Mulgoa Road intersection and The Northem Road intersection.

Furthemore, the census when asking how people travel to work, providesthe option for individuals to choose one or more transport modes relevant to them and their joumey to work. For example, a resident who requires to be driven to the nea rest busstop to take the bus to the train station would choose three answers on the census: 'caras passenger', 'bus' and 'tra in'. However, it is also rea sonable to assume that some may simply answer with one mode i.e. 'train' without also indicating how they a mived at the train station (via bus orcar).

Ba sed on the above, Table 2.2 provides a breakdown of the existing train mode share based on the census data. The breakdown indicates that approximately $4.6 \%$ of Glenmore Park residents simply chose 'train' without identifying other transport modes require to reach the train station. As a result, the adjusted existing mode share has been adjusted excluding the 'train-only' results.

Table 2.2: Existing Resident Travel Mode Splits

| Mode of Travel |  | Existing Mode Share for GP1 and 2 based on Census | Adjusted Mode Share for GP1 and 2 (i.e. without Train Only as a travel mode) |
| :---: | :---: | :---: | :---: |
| Car(asdriver or passenger) |  | 87.1\% | 87.1\% |
| Train | Tra in Only | 4.6\% | Not applicable-GP1 and 2 residents require a connection to Penrith Station which is located outside the walking distance |
|  | Train-bus | 1.3\% | 2.2\% |
|  | Tra in-car (driver and passenger) | 4.0\% | 7.1\% |
|  | Train-bus-car (driver and passenger) | 0.6\% | 1.1\% |
|  | Train-others | 0.1\% | 0.1\% |
| Bus only |  | 1.0\% | 1.0\% |
| Motorcycle |  | 0.4\% | 0.4\% |

transport planning

| Mode of Travel | Existing Mode Share for GP1 and 2 <br> based on Census | Adjusted Mode Share for G P1 and 2 <br> (i.e. without Train Only as a travel <br> mode) |
| :---: | :---: | :---: |
| Bicycle | $0.2 \%$ | $0.2 \%$ |
| Wa lked only | $0.7 \%$ | $0.7 \%$ |
| Total | $\mathbf{1 0 0 \%}$ | $\mathbf{1 0 0 \%}$ |

[1] figures round ed to nea rest per cent.

Table 2.2 indicates that a la rge proportion of residents living within GP1 and 2 travel via private vehicle (driver orpassenger) with $87 \%$ mode share. Public transport makes up $11.5 \%, 0.6 \%$ travel via motorcycle and bicycle and $0.7 \%$ via walking only. The tra in-car connection makesup $7.1 \%$ indicating private vehicle is a majormeansto get to the nearest train station, as compared with the train-bus connection (2.2\%).

Table 2.3 providesa breakdown of the mode share of employed people traveling to work in GP1 a nd GP2.

Table 2.3: Existing Employee Travel Mode Splits

| Mode ofTravel | Existing Mode Share for GP1 and 2 based on Census |
| :---: | :---: |
| Car (asdriver or passenger) | $92 \%$ |
| Train | $1 \%$ |
| Bus only | $0 \%$ |
| Motorcycle | $2 \%$ |
| Bicycle | $1 \%$ |
| Walked only | $\mathbf{4} \%$ |
| Total | $\mathbf{1 0 0 \%}$ |

Table 2.3 indicates that the majority of employed people travel to GP1 and 2 via private vehicle ( $92 \%$ ), bus ( $0 \%$ ), $2 \%$ via motorcycle and $5 \%$ via a ctive travel means (i.e. walked only or bic ycle). It is noted that based on the census data $0 \%$ of employed personstake public busto travel to GP1 and 2. This could be due to the small / local na ture of existing businesses currently operating within the local centre of Glenmore Park i.e. Glenmore Park is not considered asa major employment zone / destination. Furthemore, the local centre providesan unrestricted carpark which can be utilised by employees and visitors. Unrestricted carparking is also provided within surrounding local roads which influence the use of private vehicle to travel to work. The $5 \%$ of active travel indicates that there are some local residents who travel to work via bicycle or walking.

Detailed discussion regarding proposed target mode share is provided in Section 8.1.

### 2.8 Travel Pattems

Review of Census 2016 data has been undertaken to appreciate the curent travel pattems. For the residents tra velling from GP1 and GP2 to workplace, key destinations include 32\% to Penrith, 9\% to Pa rramatta, 8\% to both Mount Druitt and Sydney Inner City. The remaining residents travel to other destinations in Greater Sydney and further. The top 10 destinations which residents in GP1 and GP2 travel to for work are summarised in Table 2.4.

Table 2.4: ABS Census 2016 Travel Pattems for Residents

| Statistical Area (Place of Work) | Proportion |
| :---: | :---: |
| 1. Penrith | 32\% |
| 2. Paramatta | 9\% |
| 3. Mount Druitt | 8\% |
| 4. Sydney Inner City | 8\% |
| 5. Blacktown | 5\% |
| 6. St Marys | 4\% |
| 7. Fa irfield | 3\% |
| 8. Memylands-G uildford | 3\% |
| 9. Blue Mounta ins | 3\% |
| 10. All Other Suburbs | 25\% |
| Total | 100\% |

### 2.9 Traffic Volumes

Tra ffic movement count surveys and queue length surveys were underta ken at the following locations during the moming and evening peak periods (7am-9am and 4pm$6 p m$ ) on Tuesday 12 December 2021:

- The Northem Road and M4 Westem Motorway interc ha nge
- The Northem Road and Glenmore Parkway / Wentworth Road
- The Northem Road and Bradley Street
- The Northem Road and Defence Establishment Access
- The Northem Road and Chain-O-PondsRoad.

In consultation with TfNSW and Council, it was a greed that intersectionsthat were underconstruction aspart of The Northem Road upgrade project would be excluded from the existing base case model, given they were to be upgraded. Assuch there is little value in calibrating and validating these intersections, noting there would be signific ant changes in road configuration following the upgrade of The Northem Road.

In order to confirm whether the surveyed traffic volumes collected in December 2021 have resumed to the pre-Covid situation, TIPP has reviewed historical SCATS count da ta and recent traffic count survey results to quantify the traffic fluctuation, namely,

- 28 November 2019 (pre-COVID)
- 26 November 2020 (minimal COVID effects)
- 27 May 2021 (outside of COVID i.e. ease of restrictions)
- 12 December 2021 (outside of COVID i.e. ease of restrictions).

Ta ble 2.5 shows a comparison of the totaltraffic volumes at The Northem Road-M4 Motorway and The Northem Road-Glenmore Parkway intersection for the weekday AM a nd PM peak hours in 2019, 2020 a nd 2021.

Table 2.5: SCATS Traffic Volume Comparison

| Intersection | Source | Date | AM Peak Hour (veh) | PM Peak Hour (veh) |
| :---: | :---: | :---: | :---: | :---: |
| The Northern RoadM4 (TC S 2306 and 3669) | TFNSW SCATS data | Thursday, 28 November 2019 | 4,103 | 4,331 |
|  |  | Thursday, 26 November 2020 | Detectors not fully operationa I after TCS upgrade throughout November 2020 |  |
|  |  | Thursday, 27 May 2021 | 5,674 | 5,924 |
|  | Traffic Survey | Tuesday, 12 December 2021 | 5,399 | 5,818 |
| The Northern RoadGlenmore Parkway (TC S 4288) | TFNSW SCATS data | Thursday, 28 November 2019 | TC S installation in 2020 therefore no data for November 2019 |  |
|  |  | Thursday, 26 November 2020 | 2,177 | 1,973 |
|  |  | Thursday, 27 May 2021 | 3,730 | 3,849 |
|  | Traffic Survey | Tuesday, 12 December 2021 | 3,618 | 3,705 |

In Table 2.5 the historical data shows that the total traffic volume was greatest in May 2021 with 5,674 vph (AM peak) and 5,924 vph (PM peak) at The Northem Road-M4 Motorway intersection and 3,730 vph (AM peak) and 3,849 vph (PM peak) at The Northem Road-Glenmore Parkway intersection.

As the highest traffic volumes oc curred in May 2021, traffic volumes recorded 27 May 2021 were a dopted in modelling as a conservative measure. These ba seline traffic
volumes were projected for years 2026 and 2036 for future year modelling for the following intersections:

- The Northem Road and Bradley Street
- The Northem Road and Defence Establishment Access
- The Northem Road and Chain-O-PondsRoad.

These intersectionswere modelled to assess the traffic impact of the development on the extemal roads, as a greed with Department of Planning and Environment (DPIE) during a meeting held on 24 March 2022.

Ba sed on the SCATS traffic volume, the following network peak hourshave been determined and adopted in this traffic a ssessment:

- 7:45am-8:45am
- $4: 15 p m-5: 15 p m$.


## 3 NSW Govemment Strategic Future Planning Policies

### 3.1 Future Transport Strategy 2056

The Future Transport Strategy is the NSW govemments' long-term plan to enhance transport choicesfor people across NSW a nd to set out the future direction of the transport infrastructure with a vision to make a real impact on the lives of people in NSW a nd to reshape the state's economic growth. Future Transport Strategy recommends the action plan for building regional aswell a sgreater metropolitan transport network by considering all modes of transport a nd the use of technology to evolve transport.

The future transport network as presc ribed in the Future Transport Strategy 2056 focuses on establishment of G reater Sydney Strategic Transport Comidors as shown in Figure 3.1. It also leaves some flexibility in planning a round these strategic locations and comidors.

The development site is closely located to the major north-south strategic transport comidor, which providesconnectivity by both public transport (Sydney Metro - Westem Syd ney Aiport Line) and The Northem Road.

The development site is strategically located close to a north-south oriented principal bicycle network link a long The Northem Road (A9). This link has rec ently been constructed along the west side of The Northem Road and runsdirectly alongside the Glenmore Park development boundary. This Principal Bic yc le link is important due to it being a direct connection between the existing Greater Pennith Metropolitan City Cluster and the future Westem Sydney Aiport Metropolitan City Cluster.

Adequate consideration has been given in the development of GP3 active transport strategy to connect the intemal bicycle and pedestrian network with the shared use path a long The Northem Road. The location of the site with respect to the Greater Sydney's future Principal Bic yc le Network as stated in the Future Transport Strategy 2056 is shown in Figure 3.2.

Figure 3.1: Greater Future Transport C omidors


Sourc e: Future Tra nsp ort Strategy 2056

Figure 3.2: Greater Sydney Princ ipal Bic ycle Network 2056


Sourc e: Future Tra nsp ort Strategy 2056

### 3.2 Greater Sydney Regional Plan 2018

The Greater Sydney Region Plan is part of the NSW Govemment's Future Transport 2056 Strategy and informs Infra struc ture NSW's State Infrastructure Strategy. The Greater Sydney Region Plan is a plan that focuses on establishing a metropolis of three cities in the greater Syd ney Region na mely the Westem Parkla nd City, the Central River City, and the Eastem Harbour City. The extent of these three metropolitan a reas is shown ind ic a tively in Figure 3.3.

The vision for the Greater Sydney Regional Plan has four key focuses: infra structure and colla boration, liveability, productivity and susta inability. While focusing on these tra its, the target is to achieve a 30-minute city. Living in a '30-minute city' will mean residents can access jobsand services in their nearest metropolitan or strategic centre within 30 minutes by public transport, walking and/orcycling, seven days a week.

Glenmore Park development lies within two very important sub-regions of the Westem Pa rkland City which are the Greater Penrith and the Westem Sydney Airport and hence will have more choice in terms of accessibility to these regions.

Figure 3.3: Greater Sydney Structure Plan 2056 - The Three Cities


Source: Greater Sydney Region Plan (March 2018)

### 3.3 Westem City District Plan (March 2018) - Greater Sydney Commission

The Westem City District Plan is a 20-year plan to manage growth within the Westem District to support the 40-year vision of G reater Sydney. The Plan defines guidelinesfor regional and local planning to a chieve outcomes in the context of economic, social, and environmental matters. This also pavesthe way forlocal council to keep their strategic planning in line with the Westem City District Plan.

Glenmore Park falls within Penrith City Council and is part of the Greater Penrith to Eastem Creek Growth Area as shown in Figure 3.4. Penrith City Council aims to a chieve a housing supply target of 6,600 for the five year period (2016-2021).

The development of GP3 is in line with the Westem City District Pla n not only for housing supply but also for the other key economic and social considerationsincluding liveability, productivity and susta inability in the local context.

The development of Glenmore Park residential area is aligned with the planning prionities a s set out in the Westem City District Plan.

Figure 3.4: Westem City District Plan


Source: Westem City District Plan - (March 2018)
transport planning

### 3.4 Ministerial Direction 3.4 Integrating La nd Use and Transport

The objective of this direction is to ensure that urban design and associated land use is planned in such a way asto provide integrated solutions for the community. This needs to be done not only from environmental a nd susta inability perspectives but should also focuson enhanced transport choices, accessibility to the basic needs such as housing, jobs, enterta inment and other factors. IfNSW and Department of Pla nning, Industry and Environment's (DPIE) guide 'Integrating Land use and Transport' sets out the rules for the project planning at all levels to improve transport choic es for all types of developments ata more detailed level.

The Glenmore Park site is in an area which is prima rily a cardominant area. However, given the planned Sydney Metro comidor from St Marys to Westem Sydney Aerotropolis, construction of The Northem Road with a dedicated buslane and off-road shared use path and the future M12 has enhanced modal choices. This means that residents would have access to direct or interconnected modes. Consideration has also been given during the design of local access roads within the development to provide an integrated transport solution for residents. The site location in relation to all these transport facilities is shown in Figure 3.5.

Figure 3.5: Available Modal Choic es in Context of the Site Location


Source: Project O verview Sydney Metro - Westem Sydney Airport

### 3.5 Sydney's 30-Minute Centres

A 30-minute city is where most people can travel to their nearest metropolitan centre and strategic centre by public transport within 30 minutes, and where everyone can travel to theirnearest strategic centre by public transport seven days a week to access
jobs, shopsand services. This is integral foreconomic competitiveness and will make GreaterSydney a more attractive place forinvestment, businesses, and skilled workers.

The location of the Study Area, in the context of the 30-minute centre by public transport, is shown in Figure 3.6. This figure also shows that 76\% of the G reater Sydney's population will be within 30 minutes tra vel of their nearest city or city cluster, by public transport by 2056.

The proposed development falls within the area which is part of the 30-minute city target. The location of GP3 development is between two major metropolitan centres i.e. Greater Penrith and the Westem Sydney Aerotropolis and both would be accessible not only by public transport but also through bicycle mode within 30 minutes. It is anticipated that the bus services would be improved within the development precinct for access to the surrounding strategic centresaswell. These centres would otherwise be a ccessible by Sydney Metro - Westem Sydney Airport line.

Figure 3.6: Greater Sydney's 30-minute cities


Sourc e: Future Tra nsport Strategy 2056

### 3.6 Westem Sydney City Deal

The Westem Sydney City Deal will esta blish rapid bus services from the metropolitan centres of Penrith, Liverpool and Campbelltown to Westem Sydney Intemational (Nancy-Bird Walton) Airport before it opens in 2026, and to the Westem Sydney Aerotropolis.

A strategic business case wascompleted in early 2020, which recommended detailed planning and a final business case be completed for the implementation of the three rapid bus routes identified in the City Deal Commitment aswell a sinvestigating two other rapid bus routes (servicing Pa ramatta and Blacktown) to support the growth of Westem Parkland City.

Detailed planning commenced in mid-2020, which involved a significant engagement program with key stakeholders to confirm the project vision, objectives a nd planning a ssumptions.

Design guidelines and baseline engineering and transport modelling investigationswere completed by the end of year 2020.

Detailed planning wasscheduled to be completed by year 2021 to confirm the services, fleet and infrastructure requirements for the rapid bus routes. Evaluation of preferred bus route operationswascompleted in year 2021. At this sta ge, detailed pla nning for rapid bus services is being finalised for the final business case, which will inform an investment decision regarding priority routes by the NSW Govemment in year 2022 to progress into delivery.

### 3.7 Westem Sydney Place-based Infrastruc ture Compact (PIC)

Westem Sydney PIC program is part of Westem City Deal, which is a shared commitment from all three tiers of govemment to create Westem Parkland City, which would make a more vibrant place to live. La unching the first phase of the PIC program means to focusan area spanning almost 36,000 hectares within Westem Parkland City asshown in the Figure 3.7.

The purpose of implementing the placed-based model is to attain the goals for Greater Sydney's development. This focus on balancing the jobswithin the Westem Parkland City would be achieved through investments on projects, which include major public transport projects, housing supply, business centres and other attractions. Hundreds of hectares of land within the initial PIC area have been rezoned in the last 15 years to support this future vision.

The development site in Glenmore Park is part of the Greater Pennith to Eastem Creek area which has the primary focus on new land release for housing, health and education facilities and innovation hubs.

Figure 3.7: Initial PIC Area and Site Location


Source: Draft PIC Report (2020) - Greater Sydney
transport planning

## 4 Future Transport Context

### 4.1 Westem Sydney Intemational Airport

Construction of Westem Sydney Intemational Airport is underway and is scheduled to begin operations in year 2026. The Aip ort is supported by the Westem Sydney Infrastructure Plan (WSIP) which outlines major road infrastructure projects to keep traffic moving in Sydney's west.

### 4.2 Westem Syd ney Infra struc ture Plan

The Austra lian and NSW govemments are jointly funding a $\$ 4.4$ billion road investment program for Westem Sydney. The Westem Sydney Infrastructure Plan (WSIP) is delivening major road infrastructure upgrades to support an integrated transport solution for the development of the Westem Sydney Intemational Airport. WSIP includes Local Roads Package funded to some Westem Sydney Counc ils with road improvement projects, including:

- The Northem Road upgrade
- Bringelly Road upgrade
- Elizabeth Drive upgrade
- M12 Motorway linking the M7 Motorway to the Westem Sydney Intemational Aiport
- Sydney Metro - Westem Sydney Airport.


### 4.3 Strategic Traffic Forec asting Model

TfNSW's Strategic Traffic Forecasting Model (STFM) considers population and employment growth and is used for high level a ssessment of major infra structure proposals, transport strategies and policy decision making. The traffic demand forecast considers major projects such as Westem Sydney Airport and M12 Motorway.

In year 2021, TFNSW provided TIPP with the following STFM model outputs for the 2-hour AM peak period and 2-hour PM peak period:

- Base Volume Development Plots (2019, 2026 and 2036)
- Glenmore Park Select Volume Plots (2019, 2026 and 2036).

In terms of the application of the STFM base volume plots, the year 2019 base volumes and the future year base volumeswere used to determine growth rates per annum (p.a). The calculated growth rates up to year 2026 and 2036 were applied to the May 2021 SCATS count data that formed the basis for the existing base volumes.

In terms of development traffic distribution, the Select Volume plots indicate the traffic distribution on the surrounding extemal road network to/from the Glenmore Park development site i.e. major collec tor and a rterial roads. As such, the traffic split proportions calculated from the plots have been utilised to distribute development traffic on The Northem Road and Chain-O-Ponds Road.

Further detailed discussion of the intemal (within residential subdivision) a nd extemal (The Northem Road corridor) development traffic distribution is provided in Section 7.3.

### 4.4 Baseline Traffic Demand Forecast

Table 4.1 provides the future AM and PM peak hour traffic volumes on The Northem Road following the upgrade. The traffic volumeshave been adjusted from the STFM model based on the procedure described in Section 4.3.

Table 4.1: Future Baseline Traffic Volumes on The Northem Road (without Development Traffic)

| The Northem Road | Direction | Year 2026 |  | Year 2036 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM Peak | PM Peak | AM Peak | PM Peak |
| Between <br> Glenmore Pa rkway <br> and Bradley Street | Northbound | Southbound | 1,670 | 1,710 | 1,760 |
|  | Northbound | Southbound | 1,060 | 1,040 | 1,430 |

### 4.5 Public Transport

### 4.5.1 Future Bus Network

### 4.5.1.1 Rapid Bus Services

The Westem Sydney City Deal Annual Progress Report (year 2021) outlinesthe plan for Penrith, Livepool and Campbelltown to be connected by fast and frequent rapid bus services that will provide connectivity to the Westem Sydney Intemational Airport a nd Aerotropolis from year 2026.

TfNSW is also planning two additional rapid bus routes to the Westem Sydney Intemational Airport, connecting Parramatta and Blacktown.

The Annual Progress Report indic ates that the final business case is being fina lised and investment decision regarding priority routes would be made by the NSW Govemment in year 2022 to progress to wards delivery.

The recent upgrade of The Northem Road includes the provision of kerbside bus lanes in both directions that would support the future operation of high-frequency, 'rapidtransit' bus services from Pennth, Liverpool a nd Campbelltown to Westem Sydney Aiport. This would provide the operating conditions required to deliver the travel speed a nd relia bility that customers would expect from a higher-order, centre-to-centre public transport connection.

### 4.5.1.2 Re-Routing of Bus Service 794

The primary objective of routing an existing bus service is to increase opportunities for use of public transport by providing bus services within GP3. The existing bus service 794 (Glenmore Park to Penrith via The Northem Road) is proposed to be modified and rerouted to service GP3. The existing bus route would be extended from Bradley Street to GP3 via Riverflat Drive and Durag Avenue. Riverflat Drive provides a better connection to the north-south collector road than Gunyah Drive.

Figure 4.1 shows the proposed future bus route of the modified busservice 794 and the indicative location of busstops on collector roadswhich capture the vast majority of dwellings within the development.

Figure 4.1: Proposed Bus Route and Bus Stops within GP3


Source: Mirvac (8 April 2022)
The future bus infrastructure will be designed, constructed and marked in accordance with requirements set out in Council DCP, Sta te Transit Bus Infrastruc ture Guide and Guidelinesfor Public Transport Capable Infra struc ture in Greenfield Sites (J uly 2018). Swept path assessments would be completed at the DA stage to ensure all roads and intersections along the future bus route will accommodate a 12.5 m bus.

### 4.5.1.3 Additional Servic es for Bus Service 789

Bus Service 789 is a direct service between Lud denham and Penrith that operatestwice a day during peak periodson weekdaysonly. Consideration should be given to providing additional services to accommodate the future bus passengers, subject to consultation with the buscompany and TFNSW.

Bus stopsare located at The Northem Road intersectionswith the entry boulevard and Chain-O-PondsRoad. Therefore dwellingslocated at the north-eastem and southeastem sections of the GP3 and the GP3 primary school would have good accessibility within a 400 m dista nce to these bus stops on The Northem Road.
transport planning

### 4.5.2 Sydney Metro Network

Sydney Metro network will include a 23 km new metro line to serve Westem Sydney Intemational (Nancy-Bird Walton) Airport connecting residential areas with employment centres to the rest of Sydney's public transport system. A total of six new metro stations will be constructed along the Westem Sydney Airport line as shown in Figure 4.2, including:

- St Marys, interchanging with the existing suburban railway station and connec ting customers with the rest of Sydney's rail system
- Orchard Hills, to senvice a future commercial and mixed-use precinct
- Luddenham, to service a future education, innovation and commercial precinct
- Two stations within the aiport site, at the a irport teminal a nd at the aiport business park
- The commercial heart of the Westem Sydney Aerotropolis.

Figure 4.2: Sydney Metro Stations along the Proposed Westem Sydney Aiport Line


Source: https://www.sydneymetro.info/westemsydneya irportline (last a ccessed on 12 J a nuary 2022)

Future metro stations will be constructed at Orcha rd Hills, Luddenha m and the Westem Syd ney Aerotropolis ensuring future residents can gain access to the 30-minute city consistent with the strategic plansdisc ussed above.
transport planning

### 4.6 Pedestria n and Cyclist Facilities

As part of The Northem Road upgrade, a number of signific ant improvements for pedestrians and cyclists have been introduced along The Northem Road. A 3m wide shared pedestrian and cycle path isprovided along the west side of The Northem Road between Maxwell Street and Mersey Street. To the north of Glenmore Parkway, sealed pedestrian footpathsare provided on both sides of The Northem Road and continue up to Jamison Road near Penrith. Signalised pedestrian crossings a re provided at all signalised intersections a long The Northem Road within the vicinity of Glenmore Park. As such, these crossing facilities are sufficient to address pedestrian desire linesacross The Northem Road to/from the busstopslocated nearthe signalised intersections with the entry boulevard and Chain-O-PondsRoad.

Further to the above, shared use paths and on-road cycling facilities would be provided within the proposed GP3 subdivision which would also connect to the existing fa cilities within GP2 and The Northem Road. This is further discussed in Section 5.5.

## 5 Proposed Development

### 5.1 Proposed Yield

The proposed development will comprise the following land use schedule by Year 2026 and Year 2036 as summarised in Table 5.1. The site area is previously shown in Figure 2.1.

Table 5.1: GP3 Development Yield

| Land Use | Type | 2026 Yield | 2036 Yield |
| :---: | :---: | :---: | :---: |
| Residential (dwellings) | La rge Lots | 0 | 81 |
|  | Low Density | 200 | 1,702 |
|  | Medium Density | 0 | 487 |
|  | Fonzie Flats | 0 | 30 |
| Mixed Use Centre | Shoptop Housing | 0 | 100 |
| School | Retail (sqm) | 0 | 5,000 |

### 5.2 Access Roads

Access to the proposed residential development would be provided at the following locations:

- An entry boulevard asan extension of the westem leg to the intersection of The Northem Road with DEOH Access Road
- Three access points off the north side of Chain-O-Ponds Road
- Primary local road access to GP2, namely, Darug Avenue, Gunyah Drive and Riverflat Drive.

Notably, no direct vehicular access would be provided to The Northem Road. Driveways would be provided on Chain-O-PondsRoad forvehicularaccess to the large lots.

The accesspointson Chain-O-PondsRoad would be in the form of a roundabout and prionty controlled T-junctions:

- A roundabout would be provided at the eastem access to facilitate U-tum movements associated with traffic accessing existing rural properties along The

Northem Road. This is beca use right tum movements across the central median would not be permitted aspart of the road upgrade on The Northem Road. The roundabout is located as faraspractical away from The Northem Road intersection to ensure queueing back to the signals would not occur.

- Priority controlled T-junctions would be provided at the middle and westem access with a dedicated right tum la ne to provide safe and efficient intersection operation.

For a ctive transport users, there are multiple access points proposed asdetailed in Section 8.3. There are three access points for pedestrians and cyclists to the sha red use path along The Northem Road. There are also three access points proposed for pedestrians and cyclists to the shared use path along Chain-O-PondsRoad.

### 5.3 Intemal Road Hierarchy

The proposed development is essentially an extension of Glenmore Park and therefore the intemal roads would be designed in accordance with the Glenmore Park Development C ontrol Plan.

The proposed hierarchy of the intemal road network is shown in Figure 5.1, with collector roads shown in red dashed lines.

Figure 5.1: Hierarchy of Intemal Roads


[^0]The proposed hierarchy of the intemal road network as shown in Figure 5.1 is expla ined below.

### 5.3.1 CollectorRoads

These roads provide a high level of accessibility for all road users throughout the development, including vehicles, bicycles, and pedestrians. Collector roads provide clear lane widths able to handle local busservices on bus routes.

Collector roads in GP3 adjoin The Northem Road and Chain-O-Ponds Road. A shared use path is provided along one side of the collector road to establish pedestrian amenity.

Bus routesa lso run along the collector road, a nd thiscan comfortably accommodate the co-location of bus shelters and pathways. Parking will be allowed on both sides of the roads.

### 5.3.2 Entry Boulevard

These roads provide a landscaped boulevard along the main entry points to GP3 from The Northem Road and Chain-O-PondsRoad.

A shared use path is provided along one side of the entry boulevard road. Parking will be a llowed on both sides of the road for most sections. The main trait of these roads is the widened median with landscaping.

### 5.3.3 MinorLocal Roads

Minor local roads are residential streets which provide limited vehic le access for through traffic looking to accessorexit the local road network. Regular, minordelays or the need fordriverco-operation due to vehicles parking on local roadsare acceptable, as a traffic calming measure, maintaining high levels of permeability for non-vehicle road users. Roadsare designed to ensure a low-speed traffic environment. Informalon-street parking constrainstraffic movement.

Footpaths will be provided adjoining all minor local roads. A low speed environment will a lso permit opportunities for mix-use traffic and better permeability for active transport users.

### 5.4 Local Area Traffic Management

Objectives of implementing traffic calming measures within GP3 include:

- Create a safe environment by reducing traffic volumes and speeds within the precinct
- Disc ourage 'rat running' through the precinct
- Make the precinct more pedestrian and cyclist friendly with the intention to increase uptake of sustainable modes for travel to and from the mixed-use centre and the existing facilities in GP2 and The Northem Road.

A gateway treatment will be provided at the eastem end of the entry boulevard and the three access points on Chain-O-PondsRoad. Design features will provide visual cues to road users including changed road surface pavement and speed limit signage to encourage a low-speed environment.

Amenity and safety on intemal roads will be mainta ined by restricting vehicle speeds. The local roads will be signposted at a speed that is consistent with other local roads in the wider Glenmore Park. Intemal roads will be signposted as $50 \mathrm{~km} / \mathrm{h}$ to reduce speed of vehicles and raise a wa reness of potential conflict points, and to encourage a lowspeed environment to all road users.

The la yout of streets itself is designed in such a way which reduces travel speeds naturally due to the alignment and the short lengths of the local roads.

Other streets slightly longer in length or camy more volume than minor local roads would have signage and line-ma rking to advise drivers of speed limits. Inclusion of pedestrian crossingsand pedestrian refuges would also act asspeed reduction measures especially in streets a long central parks and a round the mixed-use centre. Intersections at regular intervals a nd after short dista nces also help reduce speed.

LATM measureshave been considered asper TfNSW's Cycleway Design Toolboxand Walking Space Guide for guidance on appropriate mea sures.

In consideration of the above, the following traffic calming measures a re recommended which provide visual and physicalcuesto reduce traffic speedsand increase sa fety for road users:

- Kerb blisters / kerb extensions to na rrow roadway
- Reduce intersection size a nd crossing distance
- Pedestrian crossing facilities (with a flat top speed hump) to provide safe and designated crossing locations
- La ndsca ping elements.


### 5.5 Pedestria n and Cyc list Facilities

Walking and cycling are active a nd susta ina ble transport modes. Encouraging more people to walk and cycle, and combining more walking and cycling with public transport trips, would be an effective way to reduce the demand for other modes of transport.

Well-placed walking and cycling networkscan encourage people to take active transport for short distance trips to the shopsand busstops, and also increase the uptake of buses serving the precinct. In addition, good connectivity with the existing cycling route would also encourage people to cycle to worke.g. Penrith asa key workplace destination as shown in Section 2.8.

### 5.5.1 Design Guides

The guidelinesused to propose the pedestrian a nd cyclist facilities are below:

- AustroadsGuide to Road Design Part 6A
- RMS/TfNSW Bic ycle Guidelines
- NSW Cycleway Design Toolbox.

Austroads and TFNSW bicycle guidelines requirements for provision of bicycle facilities are shown in Table 5.2 a nd Figure 5.2 below.

Table 5.2: Austroads and TiNSW Bicyc le Guidelines

| Type | Minimum Width |  |
| :---: | :---: | :---: |
|  | Austroads Guidelines | TifNsw Bic ycle Guidelines |
| On road bicyc le la ne | - | $1.4 \mathrm{~m}-2.5 \mathrm{~m}$ |
| Off road sha red use path | $2.5 \mathrm{~m}-3.0 \mathrm{~m}$ | $2.0 \mathrm{~m}-4.0 \mathrm{~m}$ |
| Off road shared use path (recreational) | $3.0 \mathrm{~m}-4.0 \mathrm{~m}$ | - |

Source: Austroads, 2009 a nd TfNSW, 2005

Figure 5.2: Austroads Footpath Requirement

| Situation | Suggested minimum width (m) | Comments |
| :---: | :---: | :---: |
| General low volume | $1.2{ }^{(1)}$ | - General minimum is 1.2 m for most roads and streets. <br> - Clear width required for one wheelchair. <br> - Not adequate for commercial or shopping environments. |
| High pedestrian volumes | 2.4 (or higher based on volume) | - Generally commercial and shopping areas. |
| For wheelchairs to pass | 1.8 | - Refer also to AS 1428.1:2009. |
| For people with other disabilities | 1.0 |  |

Source: Austroads 2009

### 5.5.2 Active Transport Plan

The proposed development is essentially an extension of Glenmore Park a nd therefore active transport facilities would be connected with GP2. The design provides walking and cycling routesconnecting with GP2 and The Northem Road forming an extended
network, and enablescyclists separated from traffic to provide a safe environment asa way to encourage cycling.

Shared use paths would be provided on collectorand local roads that connect with The Northem Road, Chain-O-PondsRoad and GP2 as shown in Figure 5.3.

Figure 5.3: Proposed GP3 Active Transport Plan


Source: Mirvac (13 April 2022)
Orange lines depict a shared use path on one side of the road, while green lines depict footpaths on the otherside of the road. Blue linesdepict the shared use path in the open space area through local and district parks.

Footpaths would be provided in the verge of local roads where asterisks are shown. No dedicated on-road bicycle lanesare proposed within GP3. However, some of the local streets a re expected to accommodate cyclists as they travel between their residence and the nearest shared use path on the collector/local roads.

Shared use pathsare provided to enable direct east-west access between the open space areas in GP3 and the existing shared use path on The Northem Road, at three locations where vehicular access is not allowed.

A mixed-use environment would be provided on local roads for cyclists within a $50 \mathrm{~km} / \mathrm{h}$ speed zone and designed to ensure these roadsare safe and comfortable for riders of all ages and abilities to mix with traffic. Shared use paths would be provided on the intemal collector roads and through the park to provide connectivity to the existing
cycling routes in GP2 a nd The Northem Road. Refer to Section 5.4 for the recommended LATM measures to make the intemal roads sa fer and to support walking a nd cycling for users of all a ges a nd a bilities.

The proposed grid pattem of streets allows greater pedestria $n$ and cyclist permeability. Provision of cul-de-sacs is minimised in the design, but one is proposed in the vicinity of the westem most intersection on Chain-O-Ponds Road. A shared use path is provided to connect the cul-de-sac with Chain-O-PondsRoad to enable direct and convenient connectivity to the green space and Chain-O-Ponds Road, even where a 'No-Through Road' prevents through traffic.

There is a pair of short cul-de-sacslocated in the south-eastem quadrant of the subject development, which will be reviewed at the DA stage and if possible, through connections would be provided.

### 5.5.3 Path Width

The width of the active transport facilities in GP2 are generally 1.2 m wide footpath or 2.5 m wide shared use path on local roads.

For GP3, similar criteria have been adopted to maintain consistency with GP2 and to a lso meet Austroads minimum requirements. An aerial image of existing footpathsand sha red use paths within GP2 is shown in Figure 5.4 while the Austroadspath width graph is shown in Figure 5.5.

Figure 5.5 shows that the Austroads guide indicatesthat a 2.5 m shared use path can support up to 50 pedestria ns and 560 cyclists per hour. The subject development would not generate demandshigher than this threshold on local roads, but could on busier paths along collectorroads.
transport planning
Figure 5.4: Existing Footpath and Shared Use Path Widths in GP2


Figure 5.5: Austroads Path Widths for a 50/50 Direction Split


Source: Austroads

Therefore, a minimum 1.2 m wide footpath or 2.5 m wide shared use path providesa complia nt requirement for paths on roads in GP3 as consistent with the GP2 provision. This is consistent with the approach taken for the minorlocal roads, with a 1.2 metre path provided on one side only.

It is a cknowledged that while govemment agencies may have expressed a keenness for widerpaths, there is also a push to reduce the urban heat island effect. Provision of a shared path on one side of the road will provide additional planting space, especially because the site is located in a westem suburb of Greater Sydney which is vulnerable to the urban heat island effect.

Further information on path widths will be provided during the detailed design sta ge.

### 5.5.4 Pedestrian and Cyclist Movements

Figure 5.6 shows the primary movement coridors for a ctive travel within GP3 where shared use paths would be provided to accommodate these majoractive travel movements.

Secondary movement comidors are shown in Figure 5.6 to support the primary movements and a mix of shared use paths, on-road mixed environment cycle link and connections of footpaths.

Figure 5.6: Primary and Secondary Movement C oridors for Active Travel


### 5.5.5 Crossing Facilities

The proposed crossing facilities within the precinct would be designed to make it easy for pedestria ns of all abilities and ages to cross roads.

The NSW cycleway design toolboxand the NSW bicycle guidelines have been consulted to propose suitable types of crossing facilities. Three types of crossings have been considered forGP3:

- Pedestrian/cyclist refuge - this has been proposed along the ma in shared use path connections where they cross the collector roads.
- Raised zebra crossing - this has been considered nearthe mixed-use centre and along the route of major recreational open spaces where the TfNSW numeric warrant is met.
- Signalised pedestrian crossing - this has been considered near the public school but the TFNSW numeric warrant cannot be met.

It is expected that the above types of crossings, where the warrant is met, would provide a reasonable level of road safety for active transport users. Refer to Section 5.5.6 for the warrant a ssessment.

Provision of a good quality walking environment within the precinct will result in a greater use of active modes of transport, assisting in the shift towards sustainable mode share target set out in Section 8.1.

### 5.5.6 Warrants

The IfNSW numeric warrants for the following pedestrian crossing facilities have been reviewed based on the pedestrian and vehicular flow:

- Signalised mid-block crossing
- Pedestrian (zebra) crossing
- Children's crossing.

IFNSW Traffic Signal Design Section 2 Wa rants (2008) stipulates the numeric warrants for signalised mid-block pedestrian crossings:

## Signa lised mid-block crossing predominantly used by children:

Foreach of two one-hourperiods of an average day
(a) The pedestrian flow exceeds 50 persons/hour, and
(b) The vehic ular flow exceeds 600 vehic les/hour in each direction

While the pedestrian flow is expected to exceed 50 persons/hour outside the 1,000student school, the school frontage road is not anticipated to camy more than 600
vehicles/hour in each direction (refer to Figure 7.3) to meet the numeric warrant. Therefore, a signa lised mid-block crossing is not warranted within GP3.

Numeric al warrants for the pedestrian (zebra) crossing and children'scrossing are shown as follows in accordance with TFNSW Supplement to Austroads G uide to Traffic Management Part 10: Traffic Control and Communication Devices (2016):

## A pedestrian (zebra) crossing is waranted where:

## Normal wanant

In each of three separate one hour periods in a typical day:
(a) the pedestrian flow per hour $(P)$ crossing the road is greater than orequal to 30 AND
(b) the vehicular flow per hour $(\mathrm{V})$ through the site is greater than or equal to 500 AND
(c) the product PV is greater than or equal to 60,000

## Reduced wanant for sites used predominantly by children and by aged or impaired pedestrians

If the crossing is used predominantly by school child ren, is not suitable site for a child ren's crossing and in two counts of one hour duration immedia tely before and after school hours.-
(a) $P \geq 30$ AND
(b) $V \geq 200$.

## A children's crossing is wa ranted where:

The crossing is located on local and lightly trafficked roadswhere in a one hour duration immediately before and after school hours the traffic flow exceeds 50 vehiclesper hour in each direction and during the same hour 20 or more children cross the road within 20 m of the proposed crossing location.

### 5.5.6.1 Recommended Ped estrian (Zebra) C rossing

The school frontage road is predicted to camy in the order of 300 to 400 vehicle/hour in each direction in the AM and PM peak hours as shown in Figure 7.3. These traffic volumes exceed the threshold of 500 vehic les/hour for three hours (both directions combined) for a pedestrian (zebra) crossing, and the reduced warrant of 200 vehicles/hour (both directions combined) before and after school. These traffic volumes also exceed the threshold of 50 vehicles/hour (each direction) for a child ren's crossing.

The proposed number of school students is 1,000 , and therefore, the number of pedestrians immediately before and after school at the crossing would exceed the threshold of 20-30 in the peak hours.

It is recommended to provide a pedestrian (zebra) crossing on the school frontage road to cater for students, with an option of a crossing supervisor to be on duty if required before and after school hours.

The pedestrian (zebra) crossing can also provide a safe route to connect the mixed use centre, primary school and open space areas. The connection isfurther extended to The Northem Road via a shared use path adjacent to the school.

For the entry boulevard section along the northem frontage of the mixed use centre, traffic volumes are anticipated to be in the orderof 850-950 vehic les/hour in the peak direction and $300-400$ vehicles/hour in the anti-peak direction as shown in Figure 7.3. It is expected two travel lanes are required in each direction to accommodate the predicted traffic volumes. On this basis, a pedestrian (zebra) crossing cannot be used asit is not pemitted on roads with two or more marked travel lanes in the same direction.

Other road sectionsare predicted to camy low traffic volumes and would not meet the wa rant forpedestrian (zebra) crossings.

### 5.5.6.2 Recommended Pedestrian Refuge

Pedestrian refuge facilities are recommended at the two roundaboutson the entry boulevard, with sufficient width to be provided for storing pedestrians and bic yclesto assist with sta ged crossing. These would provide good opportunities to accommodate pedestrian desire lines to the school and mixed-use centre located south of the entry boulevard. An example from GP2 is provided in Figure 5.7.

Figure 5.7: Proposed Pedestrian/ Cyc list Refuge on Entry Boulevard


Reference: Bradley Street a nd Glengamy Drive intersection, Glenmore Park (Stage 2)

Given there are no numeric warrants for pedestrian refuges, pedestrian refuges would be provided throughout GP3 to accommodate pedestrian desire lines. Further discussion is provided in Section 5.5.7.

Kerb rampswould be provided at all intersectionsalong the footpaths and shared use paths.

### 5.5.7 Desire Lines

Based on the warrant check und ertaken above, the recommended crossing facilities are shown in Figure 5.8 to accommodate the majordesire linesto/from the following trip attractors:

- Busstops (along The Northem Road, Chain-O-PondsRoad and intemal roads)
- Mixed-use centre
- Park and recreationalareas
- Primary school.

Figure 5.8: Proposed Locations of Crossing Fac ilities


Crossing facilities have been proposed where an increased number of conflicts are expected between vehicular traffic and pedestrian/cyclist traffic.

## 6 Parking Control

The parking controls for the proposed development have been sourced from the Penrith Development C ontrol Plan (DCP) 2014 Part C 10 Transport Access a nd Pa rking.

The DCP sets out the minimum parking requirements to ensure that developments function efficiently and there is limited impact on street parking and congestion. Car parking is to be provided on-site unless the consent authority is satisfied that adequate carparking is provided elsewhere.

In contrast, TfNSW suggests Council consid ers a ppropria te restrained maximum parking rates to discourage the use of private vehicles partic ula rly for short/local trips.

### 6.1 CarParking

The DCP parking requirements for the proposed land uses are summa rised in Table 6.1. Given the number of bedrooms and the retail mix is unknown at this early sta ge, no specific parking requirement is provided for each land use.

Table 6.1: Penrith DCP CarParking Requirements

| Land Use | Type | Car Parking Rate |
| :---: | :---: | :---: |
| Residential | Low Density | 2 spaces perdwelling - stack or ta ndem parking a c ceptable |
|  | Medium Density | Multi dwelling housing <br> - 1 carspace per 1 bedroom <br> - 1.5 carspaces per 2 bedrooms orpart thereof <br> - 2 carspacesper 3 ormore bedrooms <br> - In addition, visitor parking is to be provided fordevelopments that have 5 or more dwellings: 1 space for every 5 dwellings (or part thereof) |
|  | Shop top housing | Resid ential flat build ings <br> - 1 space per 1 or 2 bedrooms <br> - 2 spaces per 3 or more bedrooms <br> - 1 space per 40 units for service vehicles <br> - In addition, visitor parking is to be provided fordevelopments that have 5 or more dwellings: 1 space per every 5 dwellings, or part thereof. <br> - 1 space for car washing for every 50 units, up to a maximum of 4 |
| Mixed Use Centre | Retail | - Supermarkets - 1 space per $10 m^{2}$ of floor area that is to be used for retailing purposes <br> - Other neighbourhood and specialty shops-1 space per $30 m^{2}$ GFA |

It is understood that Council does not c urrently support residential parking schemes. The proposed location of No Stopping zones a nd other parking restrictions will be provided at the DA stage.

### 6.2 Accessible Parking

The DCP stipulates that a ccessible parking be provided in accordance with the Access to Premises Standards, Building Code of Australia (BCA) and AS2890.

In accordance with the BCA, the retail use (Class 6 building) would require one accessible space for every 50 carparking spaces or part thereof for up to 1,000 car parking spaces, and 1 accessible space for each additional 100 carparking spaces or part thereof in excess of 1,000 carparking spaces.

### 6.3 Bicycle and Motorcycle Parking

The DCP stipulates that bic ycle parking be provided in accordance with the suggested bic ycle parking provision rates in the NSW Govemment's Planning Guidelines for Walking and Cycling 2004. Bicycle parking spaces should comply with AS2890.3 Bicycle Parking Facilities.

The planning guideline suggested bicycle parking requirements for the proposed land uses is summa rised in Table 6.2.

Table 6.2: Bic ycle Parking Requirements

| Land Use | Type |  | Bicycle Parking Rate |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Resident/ Staff (longterm use) | Customer/ Visitor (shortterm use) |
| Residential | Low Density |  | 1 perdwelling | $3-5 \%$ * d welling (1 minimum) |
|  | Medium Density |  |  |  |
|  | Shop top housing ${ }^{[1]}$ | 1-bedroom unit/flat | 20-30\%* Units | 5-10\%* Units |
|  |  | 2 ormore bedroom unit/flat | 20-30\%* Units | 5-10\%* Units |
| Mixed Use Centre |  | Retail | 3-5\%* Sta ff | 5-10\%* Staff |

The DCP does not stipulate motorc ycle parking requirements.

## 7 Traffic Impact Assessment

### 7.1 Consultation

As discussed in Section 1.3, TIPP ha sconsulted with TFNSW and Council to formulate the study methodology of this CTIA. Both a uthorities have a greed the traffic generation rates for the proposed residential dwellings, mixed-use centre and school asdiscussed below.

### 7.2 Traffic Generation

### 7.2.1 Low Density Dwellings

Typical traffic generation estimates for the proposed residential development have been sourced from the TFNSW's Guide to Traffic Generating Developments (2002) and the updates in the Technic al Direction TDT2013/04a.

Low density dwellings

- AM peak hour vehicle trips $=0.95$ trips/ d welling
- PM peak hour vehicle trips $=0.99$ trips/dwelling.


### 7.2.2 Medium Density Dwellings

As the medium density dwellings for this greenfield precinct are likely to be three-to-four-bedroom dwellings with off-street parking, the vehic le trip rates are likely to be the same as the low-density dwellings.

Medium density dwellings

- AM peak hourvehicle trips $=0.95$ trips/d welling
- PM peak hour vehicle trips $=0.99$ trips/dwelling.


### 7.2.3 Fonzie Flats and Shop-top Housings

Fonzie flats a nd shop-top housing comprise studiosor up to two-bedrooms. As such, it is assumed that the vehicle trip rates are likely to be lowerthan the low and medium density dwellings. While there are no guidelines that provide traffic generation rates for these housing types, reference has been made to TFNSW Guide to Traffic Generating Developments (2002) for the following traffic generation rates for medium density dwellings:

- AM peak hour: 0.65 trips/dwelling/hour
- PM peak hour: 0.65 trips/dwelling/hour.

The more recent TTNSW research for medium density dwellings involvesa selection of Syd ney sites with varying public transport accessibility. It tipulates lower traffic generation rates as follows:

- AM peak hour: 0.40 trips/dwelling/hour
- PM peak hour: 0.48 trips/dwelling/hour.

The higher and more conservative traffic generation rates have been adopted for Fonzie flats and shoptop housing to enable a robust traffic assessment.

### 7.2.4 Retail

Trip generation rates for retail development have been sourced from TfNSW's Trip Generation Surveys- NSW Small Suburban Shopping Centres Analysis Report (November 2018). The following rateshave been used based on the conversion of exponential models with the GLFA of the survey sites ranging from $1,000 \mathrm{~m}^{2}$ to $6,000 \mathrm{~m}^{2}$ forthe AM and PM peak periods on Wednesday/ Thursday:

- AM peak hour: 0.066G LFA +126
- PM peak hour: 0.089G LFA +170.

TFNSW has agreed that some of these trips will be intemal to the subdivision based on the economic assessment (refer to Section 7.3.2), with 'pass-by' trips i.e. linked trips from an origin to a destination that previously passed the develop ment site. AustroadsGuide to Traffic Management Part 12 recommendsa $28 \%$ discount to pass-by trips associated with a supermarket. Notably, this discount applies only to the retail component a nd not the residential trips.

### 7.2.5 Primary School

TIPP commissioned a traffic survey at SurveyorsCreek Public School located in GP1 to establish traffic generation rates for comparison with the above IfNSW traffic generation rates. The selection of this sc hool was agreed by IFNSW and Council. Surveyors Creek Public School has an enrolment of 560 students (provided by Council).

The survey recorded 2-way traffic movements in relation to pick up a nd drop off on the school frontage roads, and at the school carpark entrance and exit. The rolling hourly traffic volume profile is shown in Figure 7.1.

Figure 7.1: Rolling Hourly Traffic Volumes Associated with Surveyors Creek Primary School


Note: The on-site carpark provides 35 spaces but there are a total of 42 staff. It has been a ssumed all staff drive to work with 35 staff parked on site a nd 7 staff parked on surrounding streets during the AM and PM peak hours, not the should er peak hours.

Traffic generation ratesduring the school AM and PM peak hour have been derived as follows based on the enrolment of 560 students:

- Surveyed school AM peak hour (8:15am-9:15am): 0.76 vehic le trips/ student
- Surveyed school PM peak hour (2:30 pm -3:30pm): 0.60 vehicle trips/ student.

These traffic generation rates are higher than the average TFNSW traffic generation rates for Sydney Metropo litan primary school during the school peak hours:

- TINSW School AM peak hour. 0.67 vehicle trips/ student
- TfNSW School PM peak hour: 0.53 vehicle trips/ student.

Thus, the higher and more conservative rates were adopted in the intersection modelling to determine the intersection layout for the eastem intersection on the entry boulevard, located adjacent to the proposed primary school. The highest school trips would occurduring these school peak hours being the before and after school periods, a lbeit outside the road network peak hours that have been determined in Section 2.9 for 7:45am-8:45am and 4:15pm-5:15pm on The Northem Road.

The road network peak hours do not coincide with the school peak hoursas shown in Figure 7.1. School trip sduring the road network peak hours are signific antly less than those during the school peak hours. Based on the hourly traffic movements in the survey results and the enrolment of 560 students, the derived traffic generation rates for the road network peak hours are shown as follows:

- Road networkAM peak hour (7:45am-8:45am): 0.27 vehic le trips/ student (i.e. $27 \%$ of the school AM peak hour)
- Road network PM peak hour (4:15pm-5:15pm): 0.09 vehicle trips/ student (i.e. $15 \%$ of the school PM peak hour).

These ratesderived for the road network peak hours have been adopted for SIDRA network modelling for the intersections along The Northem Road and the intemal intersections within GP3. Refer to Section 7.7 and 7.11 for SIDRA network modelling based on the road network AM and PM peak hours.

The peak hour traffic generation inc ludes parent vehicle trips fordrop off (inbound and outbound) and staff trips (inbound only) in the AM peak; and similarly pa rent vehicle trips for pickup (inbound and outbound) and staff trips (outbound only) in the PM peak. For staff trips, it has been assumed all trips are from the extemal road network with an a ssumed caroccupancy of one staff per vehicle.

### 7.2.6 Total Traffic Generation Summary

For trips generated by the residential area, it has been assumed $20 \%$ of trips would be inbound and $80 \%$ of trips would be outbound in the AM peak hour, and these have been reversed in the PM peak hour.

Fortrips generated by the mixed-use centre, it has been assumed $50 \%$ of tripswould be inbound and $50 \%$ of trips would be outbound during the AM and PM peak hours. Similar proportions have been assumed for school drop off and pick up trips, albeit it has been assumed school staff tripswould be $100 \%$ inbound in the AM peak hour, and $100 \%$ outbound in the PM peak hour. The ultimate number of school students of 1,000 has been taken into consideration to allow forthe worst-case scenario.

The AM and PM peak hour traffic generation for the proposed residential development are provided in Table 7.1.

Table 7.1: Traffic Generation Potential

| Land Use | $\begin{aligned} & 2036 \\ & \text { Yield } \end{aligned}$ | Trip Generation Rate |  | AM Peak Hour Trip Generation |  | PM Peak Hour Tinp Generation |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM Peak | PM Peak | Inbound Tips | Outbound Tips | Inbound Tips | Outbound Trips |
| Low density dwellings | 1783 | 0.95 trips/ dwelling | 0.99 tnips/ dwelling | 339 | 1,355 | 1,412 | 353 |
| Medium density dwellings | 487 | 0.95 trips/ dwelling | 0.99 trips/ dwelling | 93 | 370 | 386 | 96 |
| Fonzie flats (within medium density) | 30 | 0.65 trips/ dwelling | 0.65 trips/ dwelling | 4 | 16 | 16 | 4 |
| Shop-top Housing | 100 | 0.65 trips/ dwelling | 0.65 trips/ dwelling | 13 | 52 | 52 | 13 |
| Retail | $\begin{gathered} 5,000 \mathrm{~m}^{2} \\ \text { GLFA } \end{gathered}$ | $\begin{gathered} 0.066 x \\ \text { GLFA }+126 \end{gathered}$ | $\begin{gathered} 0.089 x \\ \text { GLFA }+170 \end{gathered}$ | 228 | 228 | 308 | 308 |
| Primary School | 1,000 students 70 staff | $\begin{aligned} & 0.27 \text { trips } \\ & \text { per } \\ & \text { student } \end{aligned}$ | $0.09 \text { trips }$ per student | 170 | 100 | 10 | 80 |
| Total | - | - | - | 846 | 2,121 | 2,183 | 854 |

Note: Primary school trip rates are $27 \%$ of the TfNSW school AM peak trip rate, a nd 15\% of the TfNSW school PM peak trip rate, as derived based on the traffic survey at Surveyors Creek Primary School. Road network and school peak hours occur at different periods as disc ussed in Section 7.2.5.

The proposed development is estimated to generate 2,967 two-way trips in the AM peak hour and 3,037 two-wa y trips in the PM peak hour. These trips would be assigned to the intemal and extemal road networks, including The Northem Road, Chain-OPondsRoad, Riverflat Drive and Darug Avenue.

### 7.3 Traffic Distribution

### 7.3.1 Residential Trips

Directional distribution and assignment of residential traffic generated by the proposed development hasbeen obtained based on the select link analysis provided to TIPP by TFNSW as part of the STFM model output. The proportion of development traffic that is distributed to/from the north and south via The Northem Road and the west via Chain-O-Ponds Road hasbeen summarised in Table 7.2.

Table 7.2: STFM Traffic Distribution for Residential Trips (Year 2036)

| Travel Direction | AM Peak |  | PM Peak |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Inbound | Outbound | Inbound | Outbound |
| North | $79 \%$ | $72 \%$ | $70 \%$ | $83 \%$ |


| South | $14 \%$ | $23 \%$ | $24 \%$ | $14 \%$ |
| :---: | :---: | :---: | :---: | :---: |
| West | $6 \%$ | $6 \%$ | $6 \%$ | $3 \%$ |
| Total | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ |

Some residential trips involve direct travel to/from the wider road network via The Northem Road and Chain-O-PondsRoad, and some involve drop off/pick up at the primary school and high schools located within GP1, GP2 and GP3. There are a few roadsconnecting with GP2 but only Riverflat Drive and Darug Avenue have been considered for simplicity and provide a more conservative assessment.

### 7.3.2 Retail Trips

The economic assessment undertaken by Urbis (April 2022) demonstrated the market potential fora mid-size supermarket within GP3 which could anchor a neighbourhood shop ping centre of 4,500 to $5,000 \mathrm{~m}^{2} \mathrm{GLFA}$.

A summary of the potential trade area is shown in Table 7.3 for GP2, Stage 3, Mulgoa Village area. TIPP assumed a $10 \%$ catc hment for areas beyond the trade area.

Table 7.3: Traffic Distribution for Retail Thips (Year 2036)

| Trade Area | Proportion | TIPP Assumed Travel Route |  |
| :---: | :---: | :---: | :---: |
|  |  | Via Durag Avenue \& Riverflat Drive | Via The Northem Road and Chain-O-Ponds |
| Secondary north (GP2) | 29\% | 10\% | 19\% |
| Primary (GP3) | 59\% | 59\% | 0\% |
| Secondary south (Mulgoa Village) | 2\% | 0\% | 2\% |
| Beyond Trade Area | 10\% | 0\% | 10\% |
| Total | 100\% | 69\% | 31\% |

### 7.3.3 Primary School

While the catchment area is not clearly defined at this stage for the proposed primary school in GP3, SINSW advised that 70\% of the school catchment is within GP3.

Catchment of the existing nearby primary schools is shown in Figure 7.2, overlaid by the indicative catchment for the new primary school in GP2 as shown in yellow.

Figure 7.2: Existing Catchment of Nearby Schools and Indicative Catchment of Future GP2 School


Reference: www.schoolcatchment.com and New Primary School In Mulgoa Rise Transport and Traffic Assessment (PTC, August 2021)

Catchment of the proposed primary school in GP3 is likely to take on part of the future catchment of the new school in GP2, a nd part of the existing catchment of Mulgoa Prima ry School.

On this basis, the following assumptions have been made for school traffic distribution:

- Student trips based on catchment
- $70 \%$ within GP3 via the intemal road network (with a further breakdown in Table 7.4)
- $15 \%$ within GP2 via Riverflat Drive and Darug Avenue (assumption suggested by Council)
- Remaining $15 \%$ via The Northem Road and Chain-O-Ponds based on the school catchment as shown in Figure 7.2:
o 60\% via Chain-O-Ponds Road, Kings Hill Road and Mulgoa Road (west and south-west)
o $20 \%$ via The Northem Road (south)
o $20 \%$ via The Northem Road (north) to a llow for future developments located east of The Northem Road
- Staff trips based on STFM traffic distribution for the AM inbound trips a nd PM outbound trips (refer to Table 7.2).

A breakdown of the school trips between GP3 residents a nd the GP3 school is provided in Table 7.4, noting that these school trips exclude the 70 staff trips (based on one staff pervehic le) in the AM and PM peak hours.

Table 7.4: Sc hool Trips (70\% Catc hment within GP3)

| Peak Hour | Direction | Proportion | Travel Route | GP3 School Student Tips (70\% <br> Catchment) |
| :---: | :---: | :---: | :---: | :---: |
| AM | Inbound to School | 30\% | Drop off trips then extemal (as part of the 80\% resid entia I outb ound trips) | 42 |
|  |  | 20\% | GP3 internal drop-off trips | 28 |
|  | Outbound from School | 30\% | Drop off trips then extemal (as part of the 80\% resid entia I outb ound trips) | 42 |
|  |  | 20\% | GP3 internal drop-off trips | 28 |
| AM Peak Total | - | 100\% | - | 140 |
| PM | Inbound to School | 30\% | From extemal to GP3 school for pick up (as part of the $80 \%$ resid ential inbound trips) | 4 |
|  |  | 20\% | GP3 internal pick-up trips | 4 |
|  | Outbound from School | 30\% | Extemaland intemal return trip from school (as part of the $80 \%$ residential inbound trips) | 3 |
|  |  | 20\% | GP3 internal pick-up trips | 3 |
| PM Peak Total | - | 100\% | - | 14 |

### 7.3.4 All trips

In summary, Figure 7.3 depic ts the total traffic generation involving residential, retail and school trips distributed on the road network.

## ttpp

transport planning

Figure 7.3: Residential, Retail and School Tips (Year 2036)

## AM PEAK 745-845

PM PEAK 415-515


Note: Mid-block flows may not balance in the stick diagram due to traffic loss/ga in to/from minor roads and driveways.

### 7.4 Assessment Scenarios

The following scena rios have been considered to assess the potential traffic impact of the proposed development on the surrounding road network, as agreed with by TfNSW and Council:

- Scenario 1: 2026 "do-minimum" base case without the proposed development This scena no only includes the key intersectionsalong The Northem Road comidor.
- Scenario 2: 2036 "do-minimum" base case, without the proposed development

This scena rio includes the key intersections along The Northem Road comidor.

- Scenario 3: Scenario 2, plus the proposed ultimate development

This scena rio includes the key intersections along The Northem Road comidorand all key intemal intersections within GP3.

- Scenario 4: Recommendations to improve intersection performance


### 7.5 Future Traffic Volumes

Peak hour tuming movement volumes have been estimated based on the adjusted STFM flows provided by TFNSW asmentioned in Section 4.3.

Year 2026 and Year 2036 baseline peak hour traffic flows are shown in Figure 7.4 and Figure 7.5, respectively.

Future tra ffic volumes with ad ditional tra ffic asso ciated with the development for Year 2036 is shown in Figure 7.6.

Figure 7.4: Year 2026 Baseline Traffic Volumes (without Development Traffic)


Figure 7.5: Year 2036 Baseline Traffic Volumes (without Development Traffic )


## ttpp

transport planning

Figure 7.6: Year 2036 Future Traffic Volumes (with Development Traffic )


### 7.6 Extemal Road Network - Existing Intersection Layout

The Northem Road intersections have been assessed based on the existing la yout with the recent completion of The Northem Road Upgrade, as shown in Figure 7.7 to Figure 7.9. The orange shade depicts the buslane on The Northem Road.

Figure 7.7: Existing Layout of The Northem Road and Bradley Street


Figure 7.8: Existing Layout of The Northem Road and Entry Boulevard/DEOH Access


Note: Orange highlight denotes existing buslane on The Northem Road

Figure 7.9: Existing Layout of The Northem Road and Chain-O-Ponds Road


Note: Orange highlight denotes existing bus lane on The Northem Road

### 7.7 Extemal Road Intersection Capacity Analysis

The key intersections have been modelled in SIDRA Intersection 9 for a weekday AM and PM peak hour in Year 2026 and Year 2036. Based on a network cycle time of 140
sec onds a s required by TFNSW, the results a re shown in Ta ble 7.5. SIDRA modelling output is provided in AppendixA.

Table 7.5: Year 2026 and Year 2036 Peak Hour Intersection Operating Conditions

| Intersection | Scenario 1: 2026 (without Development) |  |  |  | Scenario 2: 2036 (without Development) |  |  |  | Scenario 3: 2036 (with Development) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AM Peak |  | PM Peak |  | AM Peak |  | PM Peak |  | AM Peak |  | PM Peak |  |
|  | Delay | LoS |
| The Northern Road - Bradley Street | 18 | B | 21 | B | 18 | B | 31 | C | 21 | B | 54 | D |
| The Northem Road - Entry Boulevard | 20 | B | 23 | B | 23 | B | 24 | B | 163 | F | 309 | F |
| The Northern Road - Chain-O-Ponds | 10 | A | 15 | B | 8 | A | 11 | A | 26 | B | 145 | F |

## Scenario 1: Year 2026 Base

The Scenario 1 modelling results indicate that the key intersectionsalong The Northem Road would operate at acceptable levels of service, based on the Year 2026 traffic demand without the proposed development traffic.

## Scenario 2: Year 2036 Base

The Scenario 2 modelling results indicate that the key intersectionsalong The Northem Road would operate at acceptable levels of service, based on the Year 2036 traffic demand without the proposed development traffic.

## Scenario 3: Year 2036 with Development

The Scenario 3 modelling results indicate that The Northem Road- Bradley Street intersection would operate at an acceptable level of service by Year 2036 with development traffic. However, the Northem Road intersections with the entry boulevard and Chain-O-Ponds Road would not be capable of accommodating the additional traffic generated by the proposed development by Year 2036.

Although the recent road upgrade hasallowed provision for tuming lanesto the entry boulevard and Chain-O-Ponds Road intersectionsfor future developments, the provision would not be sufficient to accommodate the anticipated future traffic volume. The modelling results indicate that long delays would be experienced by motorists entering the site during peak periods at the entry boulevard and Chain-OPondsRoad intersections. Traffic queues at these intersections for the right tuming
movements on the northem approach would exceed the length of the right tum storage lanes and impede the southbound through movements in the adjacent lane.

Additional capacity would be required at these intersections to sufficiently accommodate the future traffic volumes associated with the proposed development to reduce traffic delay and queue lengths. It is recommended to provide dual right tum lanes at these intersections to contain the right tuming traffic without overspilling to the adja cent southbound through lane. Provision of dual right tum lanes at these intersections would minimise queue length and delay for southbound traffic. Refer to Section 7.9 for the recommended layouts for these intersections involving the dual right tum lanes and the additional through lanes on The Northem Road.

Additional capacity is also required for the northbound through movement at The Northem Road-entry boulevard intersection. While more green time is a llocated to the side road to accommodate the egress traffic from the development, more capacity is required on The Northem Road through the provision of an additional northbound lane.

Notwithstanding the above results, the eastbound traffic queues along the entry boulevard and Chain-O-Ponds Road towards The Northem Road intersection would not extend to the next intersection to the west.

The available length between The Northem Road and the first major intersection is 400 m on the entry boulevard and 285 m on Chain-O-Ponds Road, while the modelled traffic queues are 182 m and 175 m respectively. As such, the traffic queues would not impede the operation of the adjacent intersections.

### 7.8 Extemal Road Level of Service

An a nalysis of roa dway level of service has been undertaken to determine the impact of development-related traffic in Year 2036. Mid-block lane capacity for urban arterial roads with intemupted flowsisdependent upon a number of factors. In accordance with IFNSW Guide to Traffic Generating Development (2002), the typical lane capacity is $1,900 \mathrm{pcu} / \mathrm{hr}$ for a four lane divided road under clearway conditions.

The definition of the mid-block level of service based on the maximum volume to capacity ratio (V/C) is shown in Table 7.6 for multi-lane roads with a free flow speed of $70 \mathrm{~km} / \mathrm{h}$, in accordance with Austroa ds Guide to Traffic Management.

Table 7.6: Mid-Block Level of Service Definitions and Criteria for Multi-Lane Road

| LoS | Definition | V/C Ratio |
| :---: | :---: | :---: |
| A | A condition of free flow in which individual drivers a re virtua lly una ffec ted <br> by the presence of others in the traffic strea m. Freedom to select desired <br> speedsand to manoeuve within the traffic stream is extremely high. | Less than or <br> equal to 0.26 |

transport planning

| LoS | Definition | V/C Ratio |
| :---: | :---: | :---: |
| B | In the zone of stable flow where drivers still have rea sonable freedom to select theirdesired speed and to manoeuvre within the traffic stream. The general level of comfort is a little less than with level of service A. | 0.27 to 0.41 |
| C | Also in the zone of stable flow, but most drivers are restricted to some extent in their freedom to select their desired speed and to ma noeuvre within the traffic stream. The generallevel of comfort and convenience dec lines notic eably at this level. | 0.42 to 0.59 |
| D | Close to the limit of stable flow and approaching unstable flow. All drivers are severely restricted in their freedom to elect their desired speed and to manoeuvre within the traffic stream. The general level of comfort and convenience is poor, and small increases in traffic flow would generally cause operational problems. | 0.60 to 0.81 |
| E | Traffic volumes are at orclose to capacity, and there is virtually no freedom to select desired speeds or to ma noeuvre within the traffic stream. Flow is unstable a nd minor disturbances within the tra ffic stream would cause breakdown. | 0.82 to 1.00 |
| F | In the zone of forced flow, where the a mount of traffic approaching the point under consideration exceeds that which can pass it. Flow breakdown occurs, a nd queuing and delays result. | Greater than $1.00$ |

The lane capacity and mid-blockcapacity a ssessment resultsfor the AM and PM peak hours are shown in Table 7.7 for the 2026 Base Case and for 2036 Base Case and 2036 with development. The volume capacity ratio is shown as $\mathrm{V} / \mathrm{C}$.

Table 7.7: Year 2026 Peak Hour Mid-Block Operating Performance Summary - No Road Upgrade Improvement Works

| Road Section | Direction | 2026 Base Case |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No. Lanes | Mid-Block Capacity | AM Peak |  |  | PM Peak |  |  |
|  |  |  |  | Row | V/C | LOS | Fow | V/C | LOS |
| The Northern Road, between Glenmore Parkway and Bradley Street | Northbound | 3 | 5,700 | 1,673 | 0.29 | B | 1,711 | 0.30 | B |
|  | Southbound | 3 | 5,700 | 1,167 | 0.20 | A | 1,738 | 0.30 | B |
| The Northern Road, between Bradley Street and Entry Boulevard | Northbound | 2 | 3,800 | 1,062 | 0.28 | B | 1,428 | 0.38 | B |
|  | Southbound | 2 | 3,800 | 1,040 | 0.27 | B | 1,319 | 0.35 | B |
| The Northern Road, between Entry Boulevard and Chain O-PondsRoad | Northbound | 2 | 3,800 | 1,085 | 0.29 | B | 1,411 | 0.37 | B |
|  | Southbound | 2 | 3,800 | 1,052 | 0.28 | B | 1,319 | 0.35 | B |
| The Northern Road, South of Chain-OPondsRoad | Northbound | 2 | 3,800 | 1,064 | 0.28 | B | 1,394 | 0.37 | B |
|  | Southbound | 2 | 3,800 | 1,044 | 0.27 | B | 1,277 | 0.34 | B |

transport planning

Table 7.8: Year 2036 Peak Hour Mid-Block Operating Performance Summary

| Road Section | Direction | 2036 Base Case |  |  |  |  |  |  |  | 2036 with Development |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & y \\ & \frac{1}{9} \\ & 0 \\ & 0 \end{aligned}$ | Mid-Block Capacity | AM |  |  | PM |  |  | $\begin{aligned} & y \\ & \frac{y}{9} \\ & \text { ó } \\ & \text { O } \end{aligned}$ | Mid-Block Capacity | AM |  |  | PM |  |  |
|  |  |  |  | 3 | $\frac{u}{\lambda}$ | $9$ | $\begin{aligned} & \text { zo } \\ & \text { 운 } \end{aligned}$ | $\frac{u}{\lambda}$ | $9$ |  |  | 3 | $\frac{u}{\lambda}$ | g | 3 | $\frac{u}{i}$ | @ |
| The Northern Road, between Glenmore Parkway and Bradley Street | Northbound | 3 | 5,700 | 1,759 | 0.31 | B | 1,886 | 0.33 | B | 3 | 5,700 | 2,962 | 0.52 | C | 2,283 | 0.40 | B |
|  | Southbound | 3 | 5,700 | 1,350 | 0.24 | A | 1,947 | 0.34 | B | 3 | 5,700 | 1,721 | 0.30 | B | 3,371 | 0.59 | D |
| The Northem Road, between Bradley Street and Entry Boulevard | Northbound | 2 | 3,800 | 1,037 | 0.27 | B | 1,687 | 0.44 | C | 2 | 3,800 | 2,193 | 0.58 | C | 2,098 | 0.55 | C |
|  | Southbound | 2 | 3,800 | 1,177 | 0.31 | B | 1,333 | 0.35 | B | 2 | 3,800 | 1,563 | 0.41 | C | 2,680 | 0.71 | D |
| The Northern Road, between Entry Boulevard and Chain O-PondsRoad | Northbound | 2 | 3,800 | 1,052 | 0.28 | B | 1,678 | 0.44 | C | 2 | 3,800 | 1,613 | 0.42 | C | 1,990 | 0.52 | C |
|  | Southbound | 2 | 3,800 | 1,206 | 0.32 | B | 1,302 | 0.34 | B | 2 | 3,800 | 1,566 | 0.41 | C | 1,979 | 0.52 | C |
| The Northem Road, South of Chain-OPonds Road | Northbound | 2 | 3,800 | 1,030 | 0.27 | B | 1,660 | 0.44 | C | 2 | 3,800 | 1,099 | 0.29 | B | 1,926 | 0.51 | C |
|  | Southbound | 2 | 3,800 | 1,198 | 0.32 | B | 1,258 | 0.33 | B | 2 | 3,800 | 1,588 | 0.42 | C | 1,361 | 0.36 | B |

transport planning

## Year 2026 Base Case

Table 7.7 shows that the mid-block LoS along The Northem Road would operate satisfac torily during the AM and PM peak hour in Year 2026 at LoSC or better, indic ating spare capacity would be available to accommodate additional traffic volume on The Northem Road.

## Year2036 Scenarios

## 2036 Base Case

Table 7.8 shows that The Northem Road during the 2036 AM and PM peak will continue to operate similarly to 2026 at LoSC or better, indic ating spare capacity would be available to accommodate additional traffic volume on The Northem Road.

2036 with Development
Table 7.8 shows that the majority of The Northem Road will continue to operate at LoSC or better during the AM and PM peak with the additional development traffic. The southbound flows between Glenmore Parkway and Entry Boulevard would operate acceptably at LoSD during the PM peak.

Overall, the mid-block level of service indicates that the mid-block road capacity on The Northem Road would be sufficient to accommodate the future traffic growth and even with the additional traffic associated with the proposed development.

### 7.9 Future Road Network (with Intersection Upgrade)

### 7.9.1 Recommended Intersection Upgrade Measures(Year 2036)

The recommended intersection upgrade works are desc ribed as follows for Year 2036:

- The Northem Road intersection with the Entry Boulevard (refer to Figure 7.10)
- Add a 235 m long southbound right tum lane and inc rease existing the right tum lane length to 235 m .
- Add a short northbound through approach lane 150 m in length.
- Add a short northbound through departure lane 150 m in length.
- Provide a left tum high angle slip lane on the Entry Boulevard.
- The Northem Road intersection with Chain-O-Ponds Road (refer to Figure 7.11)
- Add a short northbound through approach lane 150 m in length.
- Add a short northbound through departure lane 100 m in length.
- Add a 220 m long southbound right tum lane and inc rease the existing right tum lane length to 220 m .
- Re-line mark Chain-O-PondsRoad to swap the existing 65 m short lane with the full length lane to provide more storage capacity to accommodate the dominant left tum movement, without being impeded by the right tum traffic.

Strategic design concept plansillustrating the above recommended intersection upgrade measures are provided in Appendix B.

Figure 7.10: The Northem Road / Defence Establishment Orc hard Hills/ Entry Boulevard Proposed Upgrades


Note: Orange highlight denotes existing bus la ne on The Northem Road

Figure 7.11: The Northem Road / Chain-O-Ponds Road Proposed Upgrades
Existing


Note: Orange highlight denotes existing bus lane on The Northem Road

### 7.9.2 Operating Conditions

Table 7.9 shows the operating conditions of the intersections based on the recommended intersection upgradesat The Northem Road intersections with entry boulevard and Chain-OPondsRoad.

Table 7.9: Year 2036 Peak Hour Intersection Operating Conditions (with Intersection Upgrades)

| Intersection | Scenario 4 (2036 with Development) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AM Peak |  | PM Peak |  |
|  | Delay | LoS | Delay | LoS |
| The Northern Road - Bradley Street | 24 | B | 30 | C |
| The Northem Road - Entry Boulevard | 45 | D | 48 | D |
| The Northern Road - Chain-O-Ponds | 30 | C | 30 | C |

Ascan be seen in Table 7.9, these intersectionsare expected to operate at an acceptable LoSat D or better in Scenario 4 (2036 with Development Traffic and Intersection Upgrades).

### 7.10 Intemal Road Network Intersection Layout

Control of the intemal intersections has been detemined using SIDRA modelling for year 2036 with a target LOSD when the residential dwellings, mixed-use centre and primary school are assumed to be fully occupied. The intemal road intersection capa city analysisisdisc ussed in Section 7.11.

Figure 7.12 shows the suggested intersection control for the intemal intersections.

Figure 7.12: Proposed Intemal Intersection Control


### 7.11 Intemal Road Intersection Capacity Analysis

### 7.11.1 Network Peak Hours

Table 7.10 shows the operating conditions of the intemal intersections based on the recommended intersection controlsasshown in Figure 7.12 during the following road network peak hours:

- 7:45am-8:45am
- 4:15pm-5:15pm.

Table 7.10: Year 2036 Peak Hour Intersection Operating Conditions - Intemal Intersections

| Intersection | Control | Road Network AM Peak |  | Road Network PM Peak |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Delay | LoS | Delay | LoS |
| 6 | Give-way | 7 | A | 8 | A |
| 7 | Give-way | 8 | A | 9 | A |
| 8 | Single Lane Roundabout | 12 | A | 12 | A |
| 9 | Give-way | 6 | A | 6 | A |
| 10 | Give-way | 6 | A | 6 | A |
| 11 | Give-way | 6 | A | 6 | A |
| 12 | Single Lane Roundabout | 11 | A | 11 | A |
| 13 | Single Lane Roundabout | 17 | B | 18 | B |

As can be seen in Table 7.10, the intemal intersections all function at LoS B or better indicating that the intersection layouts as shown in Figure 7.12 can a dequately accommodate all development traffic.

### 7.11.2 Sensitivity Test (School Peak Hours)

A sensitivity test has been underta ken for the entry boulevard and Riverflat Drive intersection (Intersection 13) to confirm suitability of the recommended la yout during school peak hours. It is considered that school trips would be higher during the school peak hours (8:15am-9:15am a nd $2: 30 \mathrm{pm}-3: 30 \mathrm{pm}$ ) ascompared with the road network peak hours (7:45a m-8:45am and 4:15pm-5:15pm).

Consideration has been taken for the following factors:

- School trips based on the following traffic generation rates derived from the survey conducted at Surveyors Creek Primary School:
- School AM peak hour (8:15am-9:15am): 0.76 vehicle trips/ student
- School PM peak hour (2:30 pm -3:30pm): 0.60 vehic le trips/ student
- Inclusion of $100 \%$ of school staff inbound trips in the school AM peak and $100 \%$ of school sta ff outbound trips in the school PM peak.
o It is noted that school staff are likely to a mive prior to the school network peak a nd depart after the school network peak and therefore this is a conservative a ssessment.
- Reduction of resid ent trips through the subject intersection. Refer to Table 7.11 for the comparison of the traffic volume that occurred at The Northem Road-Glenmore Parkway Intersection based on the SCATS counts. Table 7.11 shows the traffic volume during the school AM peak hour is $83 \%$ of that during the road network AM peak hour, a nd simila rly the traffic volume during the school PM peak hour is $86 \%$ during the road network PM peak hour.

Table 7.11: Traffic Volume during Road Network Peak Hours and School Peak Hours

| Peak Hour |  | Total SCATSTraffic Volume at The <br> Northem Road- Glenmore Parkway <br> Intersection (27 May 2021) | Proportion |
| :---: | :---: | :---: | :---: | :---: |

The predicted traffic volume during the school peak hours are shown in Figure 7.13 as follows.
Figure 7.13: Year 2036 Traffic Volume at Intersection 13 during School AM and PM Peak Hours


Table 7.12 shows the operating conditions of Intersection 13 based on the recommended single la ne roundabout during the following school peak hours:

- 8:15am-9:15am
- 2:30pm-3:30pm

Table 7.12: Year 2036 Sc hool Peak Hour Intersec tion Operating Conditions - Intersec tion 13

| Intersection | Control | School AM Peak |  | School PM Peak |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Delay | LoS | Delay | LoS |
| 13 | Single Lane <br> Roundabout | 16 | B | 20 | B |

The modelling results indicate that the entry boulevard and Riverflat Drive Intersection would operate at LoS B during the school peak hours. Despite the higher tuming volumes to/from the proposed primary school, the single lane roundabout can adequately accommodate all development traffic during the school peak hours.

### 7.12 Intemal Road Level of Service

The intemal road midblock level of service has been assessed simila rly to the extemal road level of service assessment in Section 7.6. However, for urban roads there a re va rious criteria to be met which account for clearway conditions, divided or undivided road and parking lanes. The one-way mid-block lane capacity criteria from TfNSW's Guide to Traffic Generating Developments (2002) is shown in Figure 7.14.

Figure 7.14: Typic al Mid-block Capac ities for Urban Roads with Intemupted Fows

| Type of Road | One-Way Mid-block Lane Capacity (pcu/hr) |  |
| :--- | :--- | :---: |
| Median or inner lane: | Divided Road | 1,000 |
|  | Undivided Road | 900 |
| Outer or kerb lane: | With Adjacent Parking Lane | 900 |
|  | Clearway Conditions | 900 |
|  | Occasional Parked Cars | 600 |
| 4 lane undivided: | Occasional Parked Cars | 1,500 |
|  | Clearway Conditions | 1,800 |
| 4 lane divided: | Clearway Conditions | 1,900 |

Source: Table 4.3 Guide to Traffic Generating Developments (2002)
The la ne capacity and assessment results for the AM and PM peak hours are shown in Table 7.13, a nd the intemal road na mes are shown in Figure 7.15 for locations that Council required the a ssessment to be undertaken for.

Table 7.13 indic ates that all intemal roads would operate below the capacity threshold for each respective road type. All intemal roads would operate with one lane in each direction, except for the entry boulevard (B) between the mixed-use centre and Riverflat Drive where two lanes will be required in each direction to accommodate the future traffic volumes. This could be achieved through the use of No Stopping signson both sides of the road to free up the kerbside lane to enable two travellanes.

The final number of travel lanes for intersections is subject to SIDRA modelling asdepicted in Figure 7.10 and Figure 7.11 for the extemal intersections and Figure 7.12 for the intemal intersections.

Figure 7.15: Intemal Road Names


Table 7.13: Year 2036 Peak Hour Mid-Block Operating Performance - Intemal Roads

| Road Section | Road Type | Capacity (vph/ lane) | AM Peak |  |  | PM Peak |  |  | No. of Lanes Required for both AM and PM Peak |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Northbound / Eastbound | Southbound / Westbound | Twoway | Northbound / Eastbound | Southbound / Westbound | Twoway | Northbound / Eastbound | Southbound / Westbound |
| Entry Boulevard (A) | Divided | 1,000 | 886 | 317 | 1,203 | 367 | 938 | 1,305 | 1 | 1 |
| Road A | Undivided (no parking) | 600 | 746 | 302 | 1,048 | 357 | 804 | 1,161 | 2 | 2 |
| Road B | Undivided (with parking) | 600 | 321 | 117 | 438 | 114 | 344 | 458 | 1 | 1 |
| Road C | Undivided (with parking) | 600 | 286 | 206 | 492 | 165 | 257 | 422 | 1 | 1 |
| Road D | Undivided (with parking) | 600 | 47 | 36 | 83 | 36 | 133 | 168 | 1 | 1 |
| Road E | Undivided (with parking) | 600 | 127 | 353 | 481 | 367 | 133 | 500 | 1 | 1 |
| Road F | Undivided (with parking) | 600 | 87 | 267 | 354 | 281 | 79 | 360 | 1 | 1 |
| Road G | Undivided (with parking) | 600 | 68 | 217 | 285 | 229 | 75 | 304 | 1 | 1 |
| Chain-O-Ponds Road (A) | Undivided (no parking) | 900 | 701 | 180 | 881 | 212 | 741 | 953 | 1 | 1 |
| Cha in-O-Ponds Road (B) | Undivided (no parking) | 900 | 404 | 119 | 523 | 124 | 420 | 544 | 1 | 1 |
| Chain-O-Ponds Road (C) | Undivided (no parking) | 600 | 226 | 145 | 371 | 139 | 230 | 369 | 1 | 1 |
| Riverflat Drive | Undivided (with parking) | 600 | 140 | 71 | 212 | 165 | 113 | 279 | 1 | 1 |
| Darug Avenue | Undivided (with parking) | 600 | 142 | 132 | 274 | 109 | 141 | 250 | 1 | 1 |

## 8 Travel Demand Management

This section identifies the required travel demand management mea sures to encourage a mode shift to more sustainable travel modes in line with overarching transport planning strategies and guidelinesas mentioned in Section 3.

### 8.1 Target Mode Share

As discussed in Section 2.7, the 2016 Censusdata hasbeen assessed for the existing Glenmore Park to a ppreciate the existing baseline mode share of residents already residing within the area. Based on the census data it indic ates that most employed residents work in surrounding a reas in Penrith followed by areas such as Mount Druitt, Parramatta, Sydney Inner City and Blacktown.

The recent upgrade of The Northem Road with buslanes and off-road shared use path offers non-private vehicle modal choices ascompared with the baseline travel modal share recorded in 2016 prior to the road upgrade.

Measures which have been proposed to encourage future residents of GP3 to take public transport and active tra nsport to workplace and other destinations include:

- Re-routing of existing Bus Service 794 into GP3 with a good coverage of catchment to a busstop (refer to Figure 4.1)
- New shared use path along The Northem Road constructed aspart of the recent upgrade
- Good connectivity to the proposed walking and cycling routes throughout the precinct and with the existing facilities in GP2 and The Northem Road. This would encourage people to take a ctive transport to the workplace, busstopsand shops, a nd also increase the uptake of buses to further destinations.

Furthemore, the future Sydney Metro stations (Westem Sydney Airport Line) will provide GP3 residents with public tra nsport connection between the Metro stations (Orchard Hill and Luddenha m) a nd the T1 Westem Line at St Marys Station. GP3 resid ents could still catch a train at Penrith Station to other destinations.

These proposed measuresand the new Metro line would be key to address the $30-$ Minute City target from the Future Transport and Greater Sydney Region and Westem City District Plan.

A mode shift of 10\% has been targeted for GP3 for implementation of a ppropriate transport initiativesand demand management to promote a mode shift towards more susta inable transport options. It is noted that a modal shift between $3 \%-5 \%$ is typically considered to be a signific ant a chievement, based on knowledge on local and intemational green travel plans,
and advice from experts in Land and Environment Court proceedings. However, given the existing limited public transport provision is subject to signific ant changes in the future with Sydney Metro a nd bus service improvements, a higher mode shift of $10 \%$ ha s been set as a target to inc rease the uptake of public transport and active transport, given the subject site is located at a convenient location to enjoy the benefit of the new transport infrastructure.

Given Census 2016 data indicates key destinations of workplace a re located in Penrith (32\%), Pa ramatta (9\%), Mount Druitt (8\%) and Sydney Inner City (8\%), the following target mode shift as shown in Table 8.1 are considered realistic:

- $2 \%$ shift from car to bus to destinations such as Penrith serviced by Bus Route 794. Refer to Section 8.2.2 for the proposed bus re-routing to maximise bus stop catchment at GP3
- $5 \%$ shift from car to car-train due to the new Sydney Metro services (Westem Sydney Airport Line) with the closest stations at Luddenham and Orchard Hill Metro Station where residents can park-and-ride to further destinations
- $2 \%$ shift from car-train connection to bus-train connection where people take a bus to Pennith tra in station instead of driving to destinations serviced by the train line, such as Pa rramatta, Mount Druitt, and Sydney innercity
- $1 \%$ shift from car to bic ycle to destinations such asPennith which is within a 10 km distance from GP3. This is considered an acceptable cycling distance (approximately 25-30 minutes) on a designated cycling route with a flat terrain.

Table 8.1: Tavel Mode Targets

| Mode of Travel |  | Proportion (\%) |  |
| :---: | :---: | :---: | :---: |
|  |  | Adjusted Existing Mode Share for GP1 and 2 as shown in Table 2.2 | Target Shift |
| Car(asdriver orpassenger) |  | 87.1\% | $79.1 \%$, inc luding: <br> - (-2\%) shift to bus <br> - (-5\%) shift to car-tra in (or Metro) <br> - (-1\%) to bicycle |
| Tra in | Train-bus | 2.2\% | $4.2 \%$, inc luding (+2\%) from train-car so people take a bus to Penrith train station instead of driving |
|  | Train-car (driver and passenger) | 7.1\% | $10.1 \%$, inc luding <br> - (-2\%) shift to train-bus so people take a busto Penrith train station instead of driving <br> - (+5\%) shift from carto car-metro connection at Luddenham and Orchard Hill Metro Station for connection to further destination which will reduce cartrips in the wider Sydney road network |
|  | Train-bus-car (driver and passenger) | 1.1\% | No change, 1.1\% |
|  | Train-others | 0.1\% | No change, 0.1\% |
| Bus only |  | 1.0\% | $3 \%$, including (+2\%) shift from car |


| Mode of Travel | Proportion (\%) |  |
| :---: | :---: | :--- |
|  | Adjusted Existing Mode <br> Share for GP1 and 2 as <br> shown in Table 2.2 | Target Shift |
| Motorcycle | $0.4 \%$ | No change, 0.4\% |
| Bicycle | $0.2 \%$ | $1.2 \%$, including ( $+1 \%$ ) shift from car |
| Walked only | $0.7 \%$ | No change, 0.7\% |
| Total | $\mathbf{1 0 0 \%}$ | $\mathbf{1 0 \%}$ mode shift to public and active transport |

Notwithstanding, further reduction in private vehicle reliance could be expected due to integral land use planning. Future residents could shop/work in the proposed mixed-use centre instead of travelling outside the site in this mixed use development, thus reducing extemal car tnips. Furthermore, residents may also be shifted to the current trend of working from home and working with flexible hours in workplaces. These changes would also reduce the future traffic demand in the commuter peak periods.

### 8.2 Public Transport

### 8.2.1 Future Sydney Metro and Rapid Bus Services

Future Metro stations will be constructed at Orchard Hills, Luddenham and the Westem Sydney Aerotropolis to ensure future residents can gain access to the 30-minute city consistent with the strategic plansas discussed in Section 3.

The NSW Govemment will establish rapid bus services from the metro politan centres of Pennith, Liverpool and Campbelltown to Westem Sydney Intemational Aiport before it opens in 2026, a nd to the Westem Sydney Aerotro polis. A business case is being developed to enable further details to be developed to progress to wards delivery.

The recent upgrade of The Northem Road involves the provision of kerbside buslanes in both directions that would support the operation of a high-frequency, 'rapid-transit' bus services from Penrith, Liverpool and Campbelltown to Westem Sydney.

The closest existing busstopsare located adjacent to The Northem Road intersections with the entry boulevard/DEOH and Chain-O-PondsRoad. For residents located more than 400m from these busstop loc ations, it is a ntic ipated that they may park-and-ride, or be dropped off forthe busservices along The Northem Road.

### 8.2.2 Proposed Re-Routing of Bus Service 794

It is proposed to re-route the existing bus route 794 from GP2 via Riverflat Drive and Darug Avenue to provide a good coverage of bus catchment in the subject development. This
service providesconnection to Penrith CBD via GP2 and The Northem Road. This would provide a key link to Penrith Train Station as well asthe bus-train connection at Penrith bus interchange that forms the basis for a successful uptake of public transport leading to further destinations. Assuch, the bus re-routing would provide good access and connectivity to a lot of the key employment destinationsasshown in Section 2.8.

The Guidelines for Public Transport Capable Infrastructure in Greenfield Sites (J uly 2018) sets a weekday target of $90 \%$ of households to be within 400 m (as the crow flies) of a bus stop, ferry wharf, light rail station or train station between the hours of 06:00-22:00. Although a number of households in the westem most part of the site would be outside the 400 m catchment of a bus stop, it is antic ipated that $99 \%$ of overall households ( 2,365 out of 2,400 dwellings) will be within 400 m of a bus stop.

The GP3 development will be bus accessible from Riverflat Drive and Darug Avenue until Chain-O-PondsRoad. The roads set out for these routes will be capable of allowing a 12.5 m busto pass through as well as have intersectionslarge enough for their tuming paths.

### 8.2.3 Additional Servic es for Bus Service 789

The 400 m catchment from the bus stop on The Northem Road would cover the north-eastem a nd south-ea stem sections of GP3 a nd the GP3 prima ry school.

Given Bus Service 789 is a direct service between Luddenha $m$ and Penrith, there is scope to increase the twice daily services to higher frequenc y in order to better accommodate the future buspassengers, subject to consultation with the buscompany and IFNSW.

### 8.2.4 Impact on Bus Services

The impact on busservice 794 which is proposed to be diverted to service the proposed development hasbeen assessed using busoccupancy data obtained from TfNSW'sOpen Data. The data providesbusoccupancy data based on tap on / tap off data along the bus service route. The busoccupancy is provided in ranges of 20 . i.e. if there were 12 occupants the data would indicate $0-20$ while 25 occupants would indic ate 21-40.

The existing bus service 794 will be diverted to continue southbound on Da rug Avenue rather than tuming left onto Bradley Street. Assuch the busoccupancy data hasbeen obtained for the closest busstop before entering/exiting GP3 which would be the two bus stops on either side of Darug Avenue before/after Bradley Street. The bus stop IDs a re: 2745230 and 2745236.

The 794-bus route is serviced by a standard two-doorcity bus which hasa seating capacity of 47 seats and standing capacity of 25 for a total buscapacity of 72 occupants. During the AM and PM peaksa ssessed there are four 794-bus servic es per hour.

Ba sed on the services which run during the assessed AM and PM peak hours the data indicated that there were 0-20 occupants on each of the four services. As such, this
a ssessment hasconservatively assumed the upper limit of 20 occupants per service. This equates to an average busoccupancy of $28 \%$ during the AM and PM peaks. Over the course of 1-hour peak period this is equivalent to 208 unoccupied out of a capacity of 288 ( 72 total capacity multiplied by 4 services).

Based on the residential cartrip generation discussed in Section 7.2 and the census data mode share a nalysis the estimated busoccupant increase is calculated in Table 8.2.

Table 8.2: Mode Shift Target Impacts on Tip Generation

| Mode | Trip Generation (two-way) |  |  |
| :---: | :---: | :---: | :---: |
|  |  | AM Peak | PM Peak |
| Residential Car (2016 <br> Census) | $87 \%$ (refer to Ta ble 8.1) | 2,242 trips | 2,332 trips |
| Total trip generation | $100 \%$ | 2,577 trips | 2,680 trips |
| Residential Car (Target \%) | $79 \%$ (refer to Table 8.1) | 2,036 trips | 2,118 trips |
| Bus Uptake (target\%) | $\mathbf{4 \%}$ (refer to Table 8.1) | $\mathbf{1 0 3}$ new bus oc cupants | $\mathbf{1 0 7 ~ n e w ~ b u s ~ o c ~ c u p a n t s ~}$ |

The overall mode shift of $4 \%$ from private vehicles to public buses as discussed above shows 103-107 new busoccupants generated from GP3 during the AM and PM peak hours. As noted above there is 208 unoccupied capacity which would be sufficient to caterfor the new bus patrons from GP3. Furthemore, when Sydney Metro and Future Buses are operational in the future, it is anticipated that there will be a further reduction from driving as a single transport mode.

### 8.3 Active Transport

This section identifies the future active transport strategy for GP3. A comprehensive active transport network is proposed for the Glenmore Park Precinct. The focus of the active transport plan for GP3 is to connect to the already developed active transport links within GP2 and to the principal bicycle network along The Northem Road.

In conjunction with good quality footpaths and shared use paths in the precinct, this will be helpful in creating a homogenous network of active transport facilities encouraging mode shift to more susta inable modes of travel. The intemal connections of the GP3 active transport network hasa special focus to connect with the public transport stops, retail precinct, school and recreational facilities. The master plan aims to improve active transport network within the site and its connection with extemal network to enhance local movement, encourage short trips by active travel modes and reduce reliance on private vehicles.

The ma in features of active transport strategy are shown in Figure 8.1.

- South side of Amber Oak Road (loop) - the shared use path connection along Amber OakRoad is extended southbound through to the D1 open space area and providing a southbound connection all the way up to Chain-O-PondsRoad.
- West side of Darug Avenue - the shared use path connection is extended in the north-south direction to join the L1 open space area and to the main boulevard road of the GP3 and fina lly joining the central recreation a rea of LIN1.
- East side of Gunyah Drive - the shared use path a long Gunyah Drive is further extended into GP3 to connect with the mixed-use centre and rec reational precinct.
- The proposed shared use path along the north side of Chain-O-Ponds Road which will join the existing sha red use path a long The Northem Road at the signalised intersection. It will also connect with the shared use paths into the precinct through the site a ccesses on Chain-O-Ponds Road.
- Connectionsto the shared use path along The Northem Road are proposed at three locations between Chain O-Ponds Road and the entry boulevard into the GP3.

Figure 8.1: Connections to Active Transport Links


All the intemal road network into the GP3 will have a default urban speed limit of $50 \mathrm{~km} / \mathrm{hr}$. The a lignment and lengths of the local roads are designed in such a way which will naturally encourage a low-speed environment. Pedestrian crossings including raised crossing and refuge islands are proposed along major desire lines and local attractions to act asspeed reductionsmeasures. The locations of these crossing facilitiescan be viewed in Section 4.6.

All bic ycle connections within GP3 have been provided in the form of a shared use path with a width of 2.5 m . This will be further assessed during the detail design stage.

The current mode share for active transport travel is between $0 \%$ to $1 \%$ for bic yclesand between $1 \%$ to $4 \%$ for pedestrians in GP1 and 2 . This isquite low compared to some other a reasfor Greater Penrith. Better connected cycleway links are key to modal shift especially within newly built areas like GP3. It is expected that the proposed active transport strategy with active transport facilities a nd the connectionsto the Principal Bic ycle Network will encourage the modal shift to active transport mode or with a combination of other public transport modes such as the existing train and busservices, and the future Sydney Metro and rapid bus services when available.

Encouraging more people to walk and cycle and combining more walking and cycling with public transport trips, is an effec tive way to free up capacity and reduce congestion on the road network. The greater use of active modes of transport would help shift towards susta inable mode share target asdiscussed in Section 8.1.

### 8.4 Green Travel Plan

### 8.4.1 What is a Green Travel Plan (GTP)?

The key role of a Green Travel Plan (GTP) is to bring about better transport a rrangements to manage travel demands, particularly promoting more sustainable modes of travel modes which have a low environmental impact, such as active transport modes (e.g. walking, cycling, public transport) and better mana gement of car use.

Active transport presentsa number of interrelated benefits including:

- Improved health benefits
- Reduced traffic congestion, noise and air pollution caused by cars
- Greater social connections within communities
- Cost savingsto economy and ind ividual.

A Travel Plan will be prepared for the proposed development to promote sustainable travel. This GTP would be prepared to mainly target residents and retail staff of the proposed development with the intention to improve health and wellbeing of residents and retail staff, aswell asto decrease their cardependency.

It is however noted that the GTP works hand in hand with the proposed active and public transport provision to promote more walking and cycling in short trips and public transport usage for longer trips. GTP strategies have been proven at a number of other sites to increase active travel modes.

This section provides a framework for the implementation of such travel plan, noting that the full travel plan document will be provided later at DA stage.
transport planning

### 8.4.2 Objectives and Strategies

A GTP is a package of coordinated strategies and measuresto promote a range of susta inable travel choices, whilst reducing the reliance on private car usage, particularly single occupancycar trips.

It is envisa ged that the GTP for the site would relate to the following principal a reas of action:

- Public Transport-increase public transport use of residents a nd retail staff by development targeted information to inc rease knowledge and a ware of surround ing public transport facilities. This information could be provided in community and residential building notic eboards, staff area in retail establishments, and website and/or social media account of the proposed development.
- Cycling and walking - inc rease cycling and walking activities asa means to public transport by the provision of quality shared use path which connect with the shared use path in GP2 and The Northem Road. Provide bicycle parking in retail establishments and end-of-trip facilities such aschange rooms and shower a reas should be made available for retail sta ff. Regular audits/ inspections of the facilities would be conducted to ensure that the facilities are accessible and in working order.
- Development access and connectivity - improve a ctive transport a ccess and connectivity from outside and within the Study Area by developing a Transport Access Guide (TAG) to detail local walking, cycling and public transport routes. This TAG would be disseminated to residents and retail staff and will be posted on community noticeboards and online platforms.
- Community involvement - influence greater uptake of a ctive tra nsport by conducting community consultations or workshops to explore opportunities and/or constra ins to increase active transport to/from and within the development.
transport planning


## 9 Summary and Conclusions

The Transport Pla nning Partnership (TTPP) undertook a comprehensive transport impact a ssessment (CTIA) on behalf of Mirvac to assess the impacts of the proposed mixed use development as part of GP3 which consists of the following land uses:

- 1,783 low density dwellings(including 81 la rge lots)
- 487 medium density dwellings
- 30 Fonzie flats
- 100 shoptop dwellings
- $5,000 \mathrm{~m}^{2}$ G LFA mixed-use centre
- A primary school to accommodate up to 1,000 students and 70 staff.

The scope of work of this CTIA was formulated through consultation with TFNSW a nd Pennith City Council. The objective of the CTIA is to identify the following:

- road hierarchy impact and any signific ant risk that if a ny further infra structure requirements are identified, in addition to The Northem Road upgrade, to support the planning proposalupon completion.
- detailed assessment of the intemal road network has also been undertaken in public transport and active transport connectivity, intemal intersection control a nd traffic management mea sures.

Ba sed on the analysis and disc ussionspresented within this report, the following conclusions are made:
i. The proposed mixed use development is estimated to generate approximately 2,967 (two-way) vehicle trips in the AM peak hour and 3,037 (two-way) vehicle trips in the PM peak hour.
ii. Traffic distribution has ta ken into consideration the STFM select link plots provided by TFNSW, Urbis economic a ssessment and SINSW advice on school catchment.
iii. Access to the site is via the intersections on The Northem Road and Cha in-O-Ponds Road frontages, as well as the connecting roads with GP2. For a nalytic al purposes, Riverflat Drive and Darug Avenue have been assessed asthe connecting roads between GP2 and GP3.
iv. In Year 2036, dual right tum lanes from The Northem Road into the subject site would be required to accommodate the anticipated development traffic at the entry boulevard and Chain-O-Ponds Road intersections. Furthemore, an additional northbound and southbound travel lane would be required on The Northem Road to provide additional capacity at the intersectionswith the entry boulevard and Chain-O-Ponds Road.
v. An acceptable level of service (LoSD or better) would be mainta ined with the recommended intersection upgrade improvements in Year 2036 with the proposed development traffic.
vi. Local Area Traffic Management (LATM) measureswould be implemented to make the precinct more pedestrian and cyclist friendly with the intention to increase uptake of sustainable modesfor travel to and from the mixed-use centre and the existing facilities in GP2 and The Northem Road. This would a lso encourage commuters to cycle to key destination such as Penrith which is within an acceptable 10km distance (approximately 25-30 minutes) on a designated cycling route with a flat terrain.
vii. An active transport plan has been developed to provide walking and cycling routes connected with GP2 and The Northem Road forming an extended network. The shared use path would provide good connectivity to school, mixed-use centre, bus stops and open space areas.
viii. Pedestrian refuge islandswould be provided along the desire lines throughout the site to mixed-use centre, school, busstopsand open space areas. A raised zebra crossing would be provided on the school frontage road to accommodate pedestrians and cyclists to the school, mixed-used centre, busstopsand open space areas.
ix. A $10 \%$ target mode shift towards public transport and active transport with less reliance on private vehic les with implementation of the following measuresand future public transport improvements:

- Re-routing of existing Bus Service 794 into GP3 with a good coverage of catchment to a busstop
- Providing additional servicesto Bus Service 789 along The Northem Road, subject to consultation with the buscompany a nd IFNSW
- New shared use path along The Northem Road constructed aspart of the recent upgrade
- Good connectivity to the proposed walking and cycling routes throughout the precinct and with the existing facilities in GP2 and The Northem Road. This would encourage people to take active transport to the workplace, bus stopsand shops, and also increase the uptake of buses to further destinations
- The future Sydney Metro stations (Westem Sydney Airport Line) a nd bus service improvements along The Northem Road.

Overall, it is concluded that the proposed development can be accommodated with road capacity upgrades at the intersections of The Northem Road with Chain-O-PondsRoad and the entry boulevard in Year 2036.
transport planning

## Appendix A

SIDRA Modelling Output

## MOVEMENT SUMMARY

Site: 4671 [2026 AM TNR - Bradley (Site Folder: Scenario 1)]

마 Network: N101 [AM (Network Folder: Scenario 1 2026)]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Tota veh/h | IVAL WS I HV ] \% | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop. Que | EffectiveA Stop Rate | ver. No. Cycles | Aver. Speed km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 51 | 0.0 | 51 | 0.0 | 0.320 | 12.3 | LOS A | 2.0 | 22.9 | 0.18 | 0.29 | 0.18 | 59.7 |
| 2 T1 | 1055 | 16.0 | 1055 | 16.0 | * 0.320 | 4.5 | LOS A | 3.2 | 22.1 | 0.17 | 0.17 | 0.17 | 76.1 |
| Approach | 1105 | 15.3 | 1105 | 15.3 | 0.320 | 4.9 | LOS A | 3.2 | 22.9 | 0.17 | 0.17 | 0.17 | 75.5 |
| East: U-Turn Bay |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 R2 | 1 | 0.0 | 1 |  | 0.011 | 64.2 | LOS E | 0.1 | 0.4 | 0.97 | 0.58 | 0.97 | 37.9 |
| Approach | 1 | 0.0 | 1 |  | 0.011 | 64.2 | LOS E | 0.1 | 0.4 | 0.97 | 0.58 | 0.97 | 37.9 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 1 | 0.0 | 1 | 0.0 | 0.001 | 7.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.60 | 0.00 | 68.5 |
| 8 T1 | 995 | 13.0 | 995 | 13.0 | 0.213 | 4.7 | LOS A | 5.3 | 37.3 | 0.31 | 0.27 | 0.31 | 74.2 |
| 9 R2 | 245 | 0.0 | 245 | 0.0 | * 0.322 | 50.2 | LOS D | 6.5 | 45.4 | 0.88 | 0.78 | 0.88 | 45.1 |
| Approach | 1241 | 10.4 | 1241 | 10.4 | 0.322 | 13.7 | LOS A | 6.5 | 45.4 | 0.42 | 0.37 | 0.42 | 63.7 |
| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 675 | 0.0 | 675 | 0.0 | 0.568 | 41.2 | LOS C | 16.4 | 115.1 | 0.89 | 0.82 | 0.89 | 46.6 |
| 12 R 2 | 101 | 0.0 | 101 | 0.0 | * 0.180 | 53.1 | LOS D | 2.6 | 18.3 | 0.91 | 0.73 | 0.91 | 20.7 |
| Approach | 776 | 0.0 | 776 | 0.0 | 0.568 | 42.8 | LOS D | 16.4 | 115.1 | 0.89 | 0.81 | 0.89 | 44.3 |
| All Vehicles | 3123 | 9.6 | 3123 | 9.6 | 0.568 | 17.8 | LOS B | 16.4 | 115.1 | 0.45 | 0.41 | 0.45 | 61.3 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov ID Crossing | Dem. <br> Flow <br> ped/h | Aver. <br> Delay <br> sec | Level of Service | AVERAG <br> [ Ped ped | $\begin{aligned} & \text { ACK OF } \\ & = \\ & \text { Dist ] } \\ & \mathrm{m} \end{aligned}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. <br> m | Aver. <br> Speed <br> $\mathrm{m} / \mathrm{sec}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 82.0 | 36.0 | 0.44 |
| P12 Stage 2 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 82.3 | 36.5 | 0.44 |
| P1B Slip/ Bypass | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 74.3 | 26.0 | 0.35 |
| East: U-Turn Bay |  |  |  |  |  |  |  |  |  |  |
| P2 Full | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 78.1 | 31.0 | 0.40 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 87.3 | 43.0 | 0.49 |


| P32 Stage 2 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 83.5 | 38.0 | 0.46 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 84.3 | 39.0 | 0.46 |
| P4B Slip/ <br> Bypass | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 77.3 | 30.0 | 0.39 |
| All Pedestrians | 421 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 81.1 | 34.9 | 0.43 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
2:42:19 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2026 (3-int).sip9

## MOVEMENT SUMMARY

Site: 4850 [2026 AM TNR - Defence (Site Folder: Scenario 1)]

마 Network: N101 [AM (Network Folder: Scenario 1 2026)]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{aligned} & \text { AND } \\ & \text { WS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Tota veh/h | IVAL WS HV ] \% | Deg. Satn v/c | Aver. Delay sec | Level of Service | $\begin{aligned} & 95 \% \text { BU } \\ & \text { QU } \\ & \text { [ Veh. } \\ & \text { veh } \end{aligned}$ | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | Effective A Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 5 | 0.0 | 5 | 0.0 | 0.005 | 21.4 | LOS B | 0.1 | 1.0 | 0.49 | 0.65 | 0.49 | 54.2 |
| $2 \quad \mathrm{~T} 1$ | 1095 | 14.0 | 1095 | 14.0 | * 0.577 | 20.7 | LOS B | 21.6 | 169.2 | 0.73 | 0.66 | 0.73 | 56.7 |
| 3 R 2 | 9 | 0.0 | 9 | 0.0 | * 0.050 | 60.6 | LOS E | 0.5 | 3.6 | 0.93 | 0.68 | 0.93 | 39.6 |
| Approach | 1109 | 13.8 | 1109 | 13.8 | 0.577 | 21.0 | LOS B | 21.6 | 169.2 | 0.74 | 0.66 | 0.74 | 56.3 |
| East: Defence Establishment Orchard Hills |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 6 | 0.0 | 6 | 0.0 | 0.020 | 45.6 | LOS D | 0.3 | 2.4 | 0.83 | 0.64 | 0.83 | 22.7 |
| $5 \quad \mathrm{~T} 1$ | 1 | 0.0 | 1 | 0.0 | 0.020 | 41.1 | LOS C | 0.3 | 2.4 | 0.83 | 0.64 | 0.83 | 31.0 |
| 6 R2 | 19 | 0.0 | 19 | 0.0 | * 0.202 | 67.0 | LOS E | 1.1 | 7.9 | 0.99 | 0.70 | 0.99 | 18.0 |
| Approach | 26 | 0.0 | 26 | 0.0 | 0.202 | 60.8 | LOSE | 1.1 | 7.9 | 0.94 | 0.68 | 0.94 | 19.6 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 44 | 0.0 | 44 | 0.0 | 0.038 | 16.0 | LOS B | 1.0 | 6.7 | 0.40 | 0.69 | 0.40 | 52.6 |
| 8 T1 | 1038 | 13.0 | 1038 | 13.0 | 0.436 | 17.8 | LOS B | 14.1 | 98.9 | 0.58 | 0.51 | 0.58 | 53.2 |
| 9 R2 | 4 | 0.0 | 4 | 0.0 | 0.022 | 60.1 | LOS E | 0.2 | 1.6 | 0.94 | 0.65 | 0.94 | 35.2 |
| Approach | 1086 | 12.4 | 1086 | 12.4 | 0.436 | 17.9 | LOS B | 14.1 | 98.9 | 0.57 | 0.52 | 0.57 | 53.0 |
| West: Site |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 5 | 0.0 | 5 | 0.0 | 0.018 | 46.5 | LOS D | 0.3 | 2.1 | 0.83 | 0.63 | 0.83 | 22.5 |
| 11 T1 | 1 | 0.0 | 1 | 0.0 | 0.018 | 41.9 | LOS C | 0.3 | 2.1 | 0.83 | 0.63 | 0.83 | 30.8 |
| 12 R 2 | 5 | 0.0 | 5 | 0.0 | 0.056 | 65.7 | LOS E | 0.3 | 2.1 | 0.98 | 0.64 | 0.98 | 18.2 |
| Approach | 12 | 0.0 | 12 | 0.0 | 0.056 | 54.8 | LOS D | 0.3 | 2.1 | 0.90 | 0.64 | 0.90 | 21.3 |
| All Vehicles | 2234 | 12.9 | 2234 | 12.9 | 0.577 | 20.1 | LOS B | 21.6 | 169.2 | 0.66 | 0.59 | 0.66 | 54.0 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov <br> ID Crossing | Dem. Flow ped/h | Aver. Delay sec | Level of Service | AVERA <br> [ Ped <br> ped | $\begin{aligned} & \text { ACK OF } \\ & =\begin{array}{c} \text { Dist ] } \\ \mathrm{m} \end{array} \end{aligned}$ | $\begin{aligned} & \text { Prop. } \\ & \text { Que } \end{aligned}$ | Effective Stop Rate | Travel Time sec | Travel Dist. $\qquad$ | Aver. Speed $\mathrm{m} / \mathrm{sec}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 83.5 | 38.0 | 0.46 |
| P12 Stage 2 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 81.2 | 35.0 | 0.43 |
| P1B Slip/ <br> Bypass | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 74.3 | 26.0 | 0.35 |
| East: Defence Establishment Orchard Hills |  |  |  |  |  |  |  |  |  |  |


| P2 Full | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 85.0 | 40.0 | 0.47 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 84.3 | 39.0 | 0.46 |
| P32 Stage 2 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 81.2 | 35.0 | 0.43 |
| West: Site |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 82.0 | 36.0 | 0.44 |
| All Pedestrians | 368 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 81.6 | 35.6 | 0.44 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022 2:42:19 PM
Project: X:\17285 Mulgoa Planning Proposal\07 Modelling Files\2022\17285-2026 (3-int).sip9

## MOVEMENT SUMMARY

Site: 4851 [2026 AM TNR - Chain-o-Ponds (Site Folder: Scenario 1)]
2026)]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=140$ seconds (Site User-Given Cycle Time)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | ND NS HV] \% | ARR <br> [ Tota veh/h | IVAL WS HV ] \% | Deg. <br> Satn <br> v/c | Aver. Delay sec | Level of Service | $\begin{gathered} 95 \% \text { E } \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop. Que | EffectiveAv Stop Rate | ver. No. Cycles | Aver. Speed km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 5 | 0.0 | 5 | 0.0 | 0.003 | 9.6 | LOS A | 0.1 | 0.4 | 0.18 | 0.63 | 0.18 | 60.0 |
| $2 \quad \mathrm{~T} 1$ | 1115 | 13.0 | 1115 | 13.0 | * 0.688 | 13.8 | LOS A | 34.2 | 265.8 | 0.60 | 0.55 | 0.60 | 62.3 |
| Approach | 1120 | 13.0 | 1120 | 13.0 | 0.688 | 13.8 | LOS A | 34.2 | 265.8 | 0.59 | 0.55 | 0.59 | 62.3 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 T1 | 1096 | 13.0 | 1096 | 13.0 | 0.297 | 3.3 | LOS A | 7.7 | 54.1 | 0.26 | 0.23 | 0.26 | 77.3 |
| 9 R2 | 13 | 0.0 | 13 | 0.0 | * 0.072 | 70.5 | LOS F | 0.8 | 5.6 | 0.94 | 0.69 | 0.94 | 37.1 |
| Approach | 1108 | 12.9 | 1108 | 12.9 | 0.297 | 4.0 | LOS A | 7.7 | 54.1 | 0.27 | 0.24 | 0.27 | 76.6 |
| West: Chain-o-Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 27 | 0.0 | 27 | 0.0 | 0.062 | 48.7 | LOS D | 1.4 | 10.0 | 0.81 | 0.70 | 0.81 | 21.6 |
| 12 R 2 | 3 | 0.0 | 3 | 0.0 | 0.017 | 65.8 | LOS E | 0.2 | 1.4 | 0.92 | 0.63 | 0.92 | 36.1 |
| Approach | 31 | 0.0 | 31 | 0.0 | 0.062 | 50.4 | LOS D | 1.4 | 10.0 | 0.82 | 0.69 | 0.82 | 24.1 |
| All Vehicles | 2259 | 12.8 | 2259 | 12.8 | 0.688 | 9.5 | LOSA | 34.2 | 265.8 | 0.44 | 0.40 | 0.44 | 70.5 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Crossing } \\ & \text { ID } \end{aligned}$ | Dem. Flow <br> ped/h | Aver. Delay <br> sec | Level of Service | $\begin{gathered} \text { AVERAC } \\ \text { Q } \\ \text { [ Ped } \\ \text { ped } \end{gathered}$ | $\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop. Que | Effective Stop Rate | Trave Time sec | Travel Dist. <br> m | Aver. <br> Speed <br> m/sec |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 90.0 | 33.5 | 0.37 |
| P12 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P1B Slip/ Bypass | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 84.3 | 26.0 | 0.31 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P32 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 88.9 | 32.0 | 0.36 |
| West: Chain-o-Ponds Road |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| All Pedestrians | 316 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 89.8 | 33.3 | 0.37 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
2:42:19 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2026 (3-int).sip9

## MOVEMENT SUMMARY

Site: 4671 [2026 PM TNR - Bradley (Site Folder: Scenario 1)]
마 Network: N101 [PM (Network Folder: Scenario 1 2026)]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{gathered} \text { DEM } \\ \text { FLO } \\ \text { [ Total } \\ \text { veh/h } \end{gathered}$ | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR <br> FLO <br> [ Tota <br> veh/h | $\begin{aligned} & \text { IVAL } \\ & \text { WSS } \\ & 1 \text { HV ] } \\ & \% \end{aligned}$ | Deg. <br> Satn <br> v/c | Aver. Delay sec | Level of Service | $\begin{aligned} & \text { AVER- } \\ & \text { OF } \\ & \text { [ Veh. } \\ & \text { veh } \end{aligned}$ | BACK UE Dist ] m | Prop. Que | EffectiveA <br> Stop <br> Rate | ver. No. Cycles | Aver. Speed km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 141 | 0.0 | 141 | 0.0 | 0.502 | 47.4 | LOS D | 9.4 | 94.6 | 0.96 | 0.84 | 0.96 | 40.7 |
| $2 \quad \mathrm{~T} 1$ | 1298 | 16.0 | 1298 | 16.0 | * 0.502 | 17.0 | LOS B | 12.6 | 88.2 | 0.43 | 0.37 | 0.43 | 67.6 |
| Approach | 1439 | 14.5 | 1439 | 14.5 | 0.502 | 20.0 | LOS B | 12.6 | 94.6 | 0.48 | 0.42 | 0.48 | 64.7 |
| East: U-Turn Bay |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 R2 | 1 | 0.0 | 1 | 0.0 | 0.004 | 50.3 | LOS D | 0.0 | 0.2 | 0.87 | 0.58 | 0.87 | 42.4 |
| Approach | 1 | 0.0 | 1 | 0.0 | 0.004 | 50.3 | LOS D | 0.0 | 0.2 | 0.87 | 0.58 | 0.87 | 42.4 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 1 | 0.0 | 1 | 0.0 | 0.001 | 7.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.60 | 0.00 | 68.5 |
| 8 T1 | 1294 | 13.0 | 1294 | 13.0 | 0.277 | 5.0 | LOS A | 4.5 | 31.6 | 0.33 | 0.29 | 0.33 | 73.9 |
| 9 R2 | 536 | 0.0 | 536 | 0.0 | * 0.508 | 44.7 | LOS D | 8.5 | 59.3 | 0.87 | 0.82 | 0.87 | 47.0 |
| Approach | 1831 | 9.2 | 1831 | 9.2 | 0.508 | 16.6 | LOS B | 8.5 | 59.3 | 0.49 | 0.44 | 0.49 | 61.1 |
| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 348 | 0.0 | 348 | 0.0 | 0.309 | 39.3 | LOS C | 4.8 | 33.6 | 0.82 | 0.77 | 0.82 | 47.3 |
| 12 R 2 | 73 | 0.0 | 73 | 0.0 | * 0.129 | 52.6 | LOS D | 1.1 | 8.0 | 0.90 | 0.72 | 0.90 | 20.9 |
| Approach | 421 | 0.0 | 421 | 0.0 | 0.309 | 41.6 | LOS C | 4.8 | 33.6 | 0.83 | 0.76 | 0.83 | 44.1 |
| All Vehicles | 3692 | 10.2 | 3692 | 10.2 | 0.508 | 20.8 | LOS B | 12.6 | 94.6 | 0.52 | 0.47 | 0.52 | 60.2 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$ | Dem. Flow ped/h | Aver. <br> Delay <br> sec | Level of Service | AVERAC [ Ped ped | $\begin{gathered} \text { ACK OF } \\ \text { E } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. $\qquad$ m | Aver. Speed <br> $\mathrm{m} / \mathrm{sec}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 82.0 | 36.0 | 0.44 |
| P12 Stage 2 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 82.3 | 36.5 | 0.44 |
| P1B Slip/ Bypass | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 74.3 | 26.0 | 0.35 |
| East: U-Turn Bay |  |  |  |  |  |  |  |  |  |  |
| P2 Full | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 78.1 | 31.0 | 0.40 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 87.3 | 43.0 | 0.49 |
| P32 Stage 2 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 83.5 | 38.0 | 0.46 |


| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| P4 Full | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 84.3 | 39.0 | 0.46 |
| P4B Slip/ | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 77.3 | 30.0 | 0.39 |
| $\quad$ Bypass |  |  |  |  |  |  |  |  |  |  |
| All Pedestrians | 421 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 81.1 | 34.9 | 0.43 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022 2:42:28 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2026 (3-int).sip9

## MOVEMENT SUMMARY

Site: 4850 [2026 PM TNR - Defence (Site Folder: Scenario 1)] 마 Network: N101 [PM (Network Folder: Scenario 1 2026)]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l\|} \hline \text { Mov } \\ \hline \text { ID } \end{array}$ |  |  | ND NS HV] \% | ARR FLO <br> [ Tota veh/h | VAL WS HV ] \% | Deg. Satn v/c | Aver. Delay sec | Level of Service | AVER OF <br> [ Veh. veh | BACK EUE Dist ] | Prop. Que | EffectiveA <br> Stop <br> Rate | ver. No. Cycles | Aver. Speed km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | L2 | 1 | 0.0 | 1 | 0.0 | 0.001 | 21.3 | LOS B | 0.0 | 0.1 | 0.49 | 0.61 | 0.49 | 54.3 |
| 2 | T1 | 1459 | 14.0 | 1459 | 14.0 | * 0.770 | 24.2 | LOS B | 20.6 | 161.9 | 0.86 | 0.79 | 0.86 | 54.0 |
| 3 | R2 | 1 | 0.0 | 1 | 0.0 | 0.006 | 59.4 | LOS E | 0.0 | 0.2 | 0.92 | 0.60 | 0.92 | 39.9 |
| Appr | ach | 1461 | 14.0 | 1461 | 14.0 | 0.770 | 24.2 | LOS B | 20.6 | 161.9 | 0.86 | 0.79 | 0.86 | 53.9 |
| East: Defence Establishment Orchard Hills |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | L2 | 13 | 0.0 | 13 | 0.0 | 0.032 | 42.4 | LOS C | 0.4 | 2.6 | 0.80 | 0.66 | 0.80 | 23.5 |
| 5 | T1 | 1 | 0.0 | 1 | 0.0 | 0.032 | 37.8 | LOS C | 0.4 | 2.6 | 0.80 | 0.66 | 0.80 | 31.8 |
| 6 | R2 | 44 | 0.0 | 44 | 0.0 | * 0.471 | 68.6 | LOS E | 1.7 | 11.6 | 1.00 | 0.74 | 1.00 | 17.8 |
| Appr | ach | 58 | 0.0 | 58 | 0.0 | 0.471 | 62.3 | LOS E | 1.7 | 11.6 | 0.95 | 0.72 | 0.95 | 19.0 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 | L2 | 12 | 0.0 | 12 | 0.0 | 0.010 | 14.2 | LOS A | 0.1 | 0.8 | 0.28 | 0.65 | 0.28 | 53.7 |
| 8 | T1 | 1375 | 13.0 | 1375 | 13.0 | 0.578 | 19.4 | LOS B | 13.2 | 92.3 | 0.64 | 0.57 | 0.64 | 51.7 |
| 9 | R2 | 1 | 0.0 | 1 | 0.0 | 0.006 | 59.4 | LOS E | 0.0 | 0.2 | 0.96 | 0.60 | 0.96 | 35.4 |
| Approach |  | 1387 | 12.9 | 1387 | 12.9 | 0.578 | 19.4 | LOS B | 13.2 | 92.3 | 0.64 | 0.57 | 0.64 | 51.6 |
| West: Site |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 10 \\ & 11 \\ & 12 \end{aligned}$ | L2 | 1 | 0.0 | 1 | 0.0 | 0.008 | 51.8 | LOS D | 0.1 | 0.5 | 0.88 | 0.58 | 0.88 | 21.6 |
|  | T1 | 1 | 0.0 | 1 | 0.0 | 0.008 | 47.2 | LOS D | 0.1 | 0.5 | 0.88 | 0.58 | 0.88 | 29.9 |
|  | R2 | 1 | 0.0 | 1 | 0.0 | 0.011 | 64.5 | LOS E | 0.0 | 0.3 | 0.97 | 0.58 | 0.97 | 18.4 |
| Approach |  | 3 | 0.0 | 3 | 0.0 | 0.011 | 54.5 | LOS D | 0.1 | 0.5 | 0.91 | 0.58 | 0.91 | 23.8 |
| All Vehicles |  | 2909 | 13.2 | 2909 | 13.2 | 0.770 | 22.7 | LOS B | 20.6 | 161.9 | 0.76 | 0.68 | 0.76 | 51.9 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance

| Mov ID Crossing | Dem. <br> Flow <br> ped/h | Aver. <br> Delay <br> sec | Level of Service | AVERAG <br> [ Ped ped | $\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. <br> m | Aver. Speed m/sec |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 83.5 | 38.0 | 0.46 |
| P12 Stage 2 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 81.2 | 35.0 | 0.43 |
| P1B Slip/ Bypass | $53$ | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 74.3 | 26.0 | 0.35 |
| East: Defence Establishment Orchard Hills |  |  |  |  |  |  |  |  |  |  |
| P2 Full | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 85.0 | 40.0 | 0.47 |


| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| P31 Stage 1 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 84.3 | 39.0 | 0.46 |
| P32 Stage 2 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 81.2 | 35.0 | 0.43 |
| West: Site |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 82.0 | 36.0 | 0.44 |
| All Pedestrians | 368 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 81.6 | 35.6 | 0.44 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
2:42:28 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2026 (3-int).sip9

## MOVEMENT SUMMARY

Site: 4851 [2026 PM TNR - Chain-o-Ponds (Site Folder:
Scenario 1)]
마 Network: N101 [PM (Network
Folder: Scenario 1 2026)]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=140$ seconds (Site User-Given Cycle Time)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn |  | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARRI FLO [ Total veh/h | $\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & \text { IHV ] } \\ & \hline \% \end{aligned}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} \text { AVER } \\ \text { OF } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{gathered} \text { EBACK } \\ \text { EUE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | EffectiveAv <br> Stop <br> Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| L2 | 1 | 0.0 | 1 | 0.0 | 0.001 | 9.6 | LOS A | 0.0 | 0.1 | 0.18 | 0.62 | 0.18 | 60.0 |
| $2 \quad \mathrm{~T} 1$ | 1466 | 13.0 | 1466 | 13.0 | * 0.905 | 24.4 | LOS B | 41.9 | 325.9 | 0.79 | 0.77 | 0.83 | 53.8 |
| Approach | 1467 | 13.0 | 1467 |  | 0.905 | 24.4 | LOS B | 41.9 | 325.9 | 0.79 | 0.77 | 0.83 | 53.8 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 T1 | 1342 | 13.0 | 1342 | 13.0 | 0.364 | 3.5 | LOS A | 6.3 | 43.8 | 0.28 | 0.25 | 0.28 | 77.2 |
| 9 R2 | 37 | 0.0 | 37 | 0.0 | * 0.211 | 72.0 | LOS F | 1.5 | 10.2 | 0.96 | 0.73 | 0.96 | 36.8 |
| Approach | 1379 | 12.7 | 1379 |  | 0.364 | 5.3 | LOS A | 6.3 | 43.8 | 0.30 | 0.26 | 0.30 | 75.4 |
| West: Chain-o-Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 19 | 0.0 | 19 | 0.0 | 0.043 | 48.4 | LOS D | 0.6 | 4.2 | 0.80 | 0.68 | 0.80 | 21.7 |
| 12 R2 | 2 | 0.0 | 2 | 0.0 | 0.011 | 65.6 | LOS E | 0.1 | 0.6 | 0.92 | 0.61 | 0.92 | 36.2 |
| Approach | 21 | 0.0 | 21 | 0.0 | 0.043 | 50.1 | LOS D | 0.6 | 4.2 | 0.81 | 0.68 | 0.81 | 24.1 |
| All Vehicles | 2867 | 12.8 | 2867 | 12.8 | 0.905 | 15.4 | LOS B | 41.9 | 325.9 | 0.56 | 0.53 | 0.57 | 66.0 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov ID Crossing | Dem. Flow <br> ped/h | Aver. Delay <br> sec | Level of Service | $\begin{gathered} \text { AVERAG } \\ \text { QL } \\ \text { [ Ped } \\ \text { ped } \end{gathered}$ | $\begin{gathered} \text { ACK OF } \\ \text { E } \\ \text { Dist ] } \\ \mathrm{m} \end{gathered}$ | Prop. Que | Effective Stop Rate | Travel Time <br> sec | Travel Dist. $\qquad$ | Aver. Speed $\mathrm{m} / \mathrm{sec}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 90.0 | 33.5 | 0.37 |
| P12 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P1B Slip/ <br> Bypass | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 84.3 | 26.0 | 0.31 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P32 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 88.9 | 32.0 | 0.36 |
| West: Chain-o-Ponds Road |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| All Pedestrians | 316 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 89.8 | 33.3 | 0.37 |

[^1]SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
2:42:28 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2026 (3-int).sip9

## MOVEMENT SUMMARY

Site: 4671 [2036 AM TNR - Bradley (Site Folder: Scenario 2)]

마 Network: N101 [AM (Network Folder: Scenario 2
(2036))]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{gathered} \text { ND } \\ \text { NS } \\ \text { HV ] } \\ \% \end{gathered}$ | ARR <br> FLO [ Tota veh/h | IVAL WS HV ] \% | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | CK OF <br> UE <br> Dist ] <br> m | Prop. Que | $\begin{aligned} & \text { Effective A } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$ | ver. No. Cycles | Aver. Speed $\mathrm{km} / \mathrm{h}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 56 | 0.0 | 56 |  | 0.123 | 13.5 | LOS A | 1.1 | 10.1 | 0.29 | 0.52 | 0.29 | 56.7 |
| 2 T1 | 1026 | 19.1 | 1026 | 19.1 | * 0.520 | 12.7 | LOS A | 8.3 | 65.9 | 0.44 | 0.39 | 0.44 | 70.3 |
| Approach | 1082 | 18.1 | 1082 | 18.1 | 0.520 | 12.7 | LOS A | 8.3 | 65.9 | 0.43 | 0.39 | 0.43 | 69.8 |
| East: U-Turn Bay |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 R2 | 1 | 0.0 | 1 | 0.0 | * 0.011 | 64.2 | LOS E | 0.1 | 0.4 | 0.97 | 0.58 | 0.97 | 37.9 |
| Approach | 1 | 0.0 | 1 |  | 0.011 | 64.2 | LOS E | 0.1 | 0.4 | 0.97 | 0.58 | 0.97 | 37.9 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 1 | 0.0 | 1 |  | 0.001 | 7.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.60 | 0.00 | 68.5 |
| 8 T1 | 1101 | 15.9 | 1101 |  | 0.288 | 4.9 | LOS A | 7.1 | 55.3 | 0.33 | 0.29 | 0.33 | 73.8 |
| 9 R2 | 320 | 0.0 | 320 |  | 0.268 | 38.0 | LOS C | 7.2 | 50.3 | 0.76 | 0.77 | 0.76 | 49.3 |
| Approach | 1422 | 12.3 | 1422 | 12.3 | 0.288 | 12.4 | LOS A | 7.2 | 55.3 | 0.43 | 0.40 | 0.43 | 64.6 |
| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 825 | 0.0 | 825 | 0.0 | * 0.511 | 30.3 | LOS C | 17.3 | 120.8 | 0.77 | 0.79 | 0.77 | 50.6 |
| 12 R 2 | 105 | 0.0 | 105 |  | 0.192 | 53.3 | LOS D | 2.7 | 19.2 | 0.91 | 0.74 | 0.91 | 20.7 |
| Approach | 931 | 0.0 | 931 |  | 0.511 | 32.9 | LOS C | 17.3 | 120.8 | 0.79 | 0.79 | 0.79 | 48.1 |
| All Vehicles | 3436 | 10.8 | 3436 | 10.8 | 0.520 | 18.1 | LOS B | 17.3 | 120.8 | 0.53 | 0.50 | 0.53 | 60.7 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov ID Crossing | Dem. Flow ped/h | Aver. Delay sec | Level of Service | AVERAG <br> [ Ped ped | $\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist ] } \\ & \mathrm{m} \end{aligned}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. <br> m | Aver. Speed <br> $\mathrm{m} / \mathrm{sec}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 82.0 | 36.0 | 0.44 |
| P12 Stage 2 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 82.3 | 36.5 | 0.44 |
| P1B Slip/ Bypass | 53 | 25.4 | LOS C | 0.1 | 0.1 | 0.90 | 0.90 | 45.4 | 26.0 | 0.57 |
| East: U-Turn Bay |  |  |  |  |  |  |  |  |  |  |
| P2 Full | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 78.1 | 31.0 | 0.40 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 87.3 | 43.0 | 0.49 |


| P32 Stage 2 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 83.5 | 38.0 | 0.46 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 84.3 | 39.0 | 0.46 |
| P4B Slip/ <br> Bypass | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 77.3 | 30.0 | 0.39 |
| All Pedestrians | 421 | 50.7 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 77.5 | 34.9 | 0.45 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
11:01:36 AM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4850 [2036 AM TNR - Defence (Site Folder: Scenario 2)]

마 Network: N101 [AM (Network Folder: Scenario 2
(2036))]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=120$ seconds (Network Optimum Cycle Time Minimum Delay)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{aligned} & \text { AND } \\ & \text { WS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Tota veh/h | IVAL WS HV ] \% | Deg. Satn v/c | Aver. Delay sec | Level of Service | $\begin{aligned} & 95 \% \text { BU } \\ & \text { QU } \\ & \text { [ Veh. } \\ & \text { veh } \end{aligned}$ | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | Effective A Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 5 | 0.0 | 5 | 0.0 | 0.054 | 17.7 | LOS B | 1.0 | 11.8 | 0.49 | 0.41 | 0.49 | 65.1 |
| $2 \quad \mathrm{~T} 1$ | 1061 | 17.0 | 1061 | 17.0 | 0.544 | 19.9 | LOS B | 19.8 | 155.7 | 0.71 | 0.63 | 0.71 | 57.3 |
| 3 R 2 | 11 | 0.0 | 11 | 0.0 | * 0.056 | 60.7 | LOS E | 0.6 | 4.0 | 0.93 | 0.68 | 0.93 | 39.6 |
| Approach | 1077 | 16.8 | 1077 | 16.8 | 0.544 | 20.3 | LOS B | 19.8 | 155.7 | 0.71 | 0.63 | 0.71 | 56.9 |
| East: Defence Establishment Orchard Hills |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 8 | 0.0 | 8 | 0.0 | 0.024 | 44.0 | LOS D | 0.4 | 3.0 | 0.81 | 0.65 | 0.81 | 23.1 |
| $5 \quad \mathrm{~T} 1$ | 1 | 0.0 | 1 | 0.0 | 0.024 | 39.4 | LOS C | 0.4 | 3.0 | 0.81 | 0.65 | 0.81 | 23.1 |
| 6 R2 | 25 | 0.0 | 25 | 0.0 | 0.066 | 43.8 | LOS D | 1.2 | 8.1 | 0.82 | 0.69 | 0.82 | 23.2 |
| Approach | 35 | 0.0 | 35 | 0.0 | 0.066 | 43.7 | LOS D | 1.2 | 8.1 | 0.82 | 0.68 | 0.82 | 23.1 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 49 | 0.0 | 49 | 0.0 | 0.043 | 19.1 | LOS B | 1.6 | 10.9 | 0.58 | 0.72 | 0.58 | 50.8 |
| 8 T1 | 1185 | 15.7 | 1185 | 15.7 | * 0.614 | 24.0 | LOS B | 26.5 | 207.0 | 0.84 | 0.75 | 0.84 | 47.6 |
| 9 R2 | 4 | 0.0 | 4 | 0.0 | 0.023 | 60.1 | LOS E | 0.2 | 1.6 | 0.94 | 0.65 | 0.94 | 29.7 |
| Approach | 1239 | 15.0 | 1239 | 15.0 | 0.614 | 23.9 | LOS B | 26.5 | 207.0 | 0.83 | 0.75 | 0.83 | 47.7 |
| West: Site |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 5 | 0.0 | 5 | 0.0 | 0.016 | 40.5 | LOS C | 0.3 | 1.9 | 0.82 | 0.62 | 0.82 | 21.5 |
| 11 T1 | 1 | 0.0 | 1 | 0.0 | 0.016 | 35.9 | LOS C | 0.3 | 1.9 | 0.82 | 0.62 | 0.82 | 31.2 |
| 12 R 2 | 5 | 0.0 | 5 | 0.0 | * 0.018 | 45.4 | LOS D | 0.3 | 1.8 | 0.85 | 0.63 | 0.85 | 20.0 |
| Approach | 12 | 0.0 | 12 | 0.0 | 0.018 | 42.3 | LOS C | 0.3 | 1.9 | 0.83 | 0.63 | 0.83 | 22.1 |
| All Vehicles | 2362 | 15.5 | 2362 | 15.5 | 0.614 | 22.7 | LOS B | 26.5 | 207.0 | 0.77 | 0.70 | 0.77 | 51.6 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov ID Crossing | Dem. Flow ped/h | Aver. Delay sec | Level of Service | AVERA <br> [ Ped <br> ped | $\begin{gathered} \text { CK OF } \\ =\begin{array}{c} \text { Dist ] } \\ \mathrm{m} \end{array} \end{gathered}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. $\qquad$ | Aver. Speed <br> $\mathrm{m} / \mathrm{sec}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 83.5 | 38.0 | 0.46 |
| P12 Stage 2 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 81.2 | 35.0 | 0.43 |
| P1B Slip/ <br> Bypass | 53 | 25.0 | LOS C | 0.1 | 0.1 | 0.90 | 0.90 | 45.0 | 26.0 | 0.58 |
| East: Defence Establishment Orchard Hills |  |  |  |  |  |  |  |  |  |  |


| P2 Full | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 85.0 | 40.0 | 0.47 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 84.3 | 39.0 | 0.46 |
| P32 Stage 2 | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 81.2 | 35.0 | 0.43 |
| West: Site |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 54.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 82.0 | 36.0 | 0.44 |
| All Pedestrians | 368 | 50.1 | LOS E | 0.2 | 0.2 | 0.94 | 0.94 | 77.5 | 35.6 | 0.46 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
11:01:36 AM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4851 [2036 AM TNR - Chain-o-Ponds (Site Folder: Scenario 2)]

마 Network: N101 [AM
(Network Folder: Scenario 2
(2036))]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=140$ seconds (Site User-Given Cycle Time)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | ND <br> NS <br> HV ] <br> \% | ARR <br> FLO <br> [ Tota <br> veh/h | IVAL WS HV ] \% | Deg. Satn v/c | Aver. Delay sec | Level of Service | $\begin{gathered} 95 \% \text { } \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | EffectiveAv Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 5 | 0.0 | 5 | 0.0 | 0.043 | 12.8 | LOS A | 0.7 | 8.1 | 0.33 | 0.31 | 0.33 | 69.8 |
| $2 \quad \mathrm{~T} 1$ | 1079 | 16.0 | 1079 | 16.0 | * 0.426 | 10.6 | LOS A | 15.8 | 123.3 | 0.48 | 0.44 | 0.48 | 65.0 |
| Approach | 1084 | 15.9 | 1084 | 15.9 | 0.426 | 10.6 | LOS A | 15.8 | 123.3 | 0.48 | 0.44 | 0.48 | 65.0 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 T1 | 1257 | 15.5 | 1257 | 15.5 | 0.419 | 3.8 | LOS A | 11.5 | 89.6 | 0.30 | 0.28 | 0.30 | 76.9 |
| 9 R2 | 13 | 0.0 | 13 | 0.0 | * 0.073 | 70.6 | LOS F | 0.8 | 5.6 | 0.94 | 0.69 | 0.94 | 33.3 |
| Approach | 1269 | 15.4 | 1269 | 15.4 | 0.419 | 4.5 | LOS A | 11.5 | 89.6 | 0.31 | 0.28 | 0.31 | 76.4 |
| West: Chain-o-Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 29 | 0.0 | 29 | 0.0 | 0.067 | 48.7 | LOS D | 1.5 | 10.8 | 0.81 | 0.70 | 0.81 | 15.4 |
| 12 R 2 | 3 | 0.0 | 3 | 0.0 | 0.017 | 65.8 | LOS E | 0.2 | 1.4 | 0.92 | 0.63 | 0.92 | 34.6 |
| Approach | 33 | 0.0 | 33 | 0.0 | 0.067 | 50.4 | LOS D | 1.5 | 10.8 | 0.82 | 0.69 | 0.82 | 18.7 |
| All Vehicles | 2386 | 15.4 | 2386 | 15.4 | 0.426 | 7.9 | LOS A | 15.8 | 123.3 | 0.40 | 0.36 | 0.40 | 72.0 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov <br> ID Crossing | Dem. Flow <br> ped/h | Aver. Delay <br> sec | Level of Service | $\begin{gathered} \text { AVERAC } \\ \text { Q } \\ \text { [ Ped } \\ \text { ped } \end{gathered}$ | ACK OF Dist ] m | $\begin{aligned} & \text { Prop. } \\ & \text { Que } \end{aligned}$ | Effective Stop Rate | Travel Time sec | Travel Dist. <br> m | Aver. Speed <br> m/sec |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 90.0 | 33.5 | 0.37 |
| P12 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P1B Slip/ Bypass | 53 | 36.2 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 56.2 | 26.0 | 0.46 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P32 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 88.9 | 32.0 | 0.36 |
| West: Chain-o-Ponds Road |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| All Pedestrians | 316 | 59.6 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 85.2 | 33.3 | 0.39 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
11:01:36 AM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4671 [2036 PM TNR - Bradley (Site Folder: Scenario 2)]
마 Network: N101 [PM (Network Folder: Scenario 2 (2036))]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=130$ seconds (Network Optimum Cycle Time Minimum Delay)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{gathered} \text { DEM } \\ \text { FLO } \\ \text { [ Total } \\ \text { veh/h } \end{gathered}$ | ND <br> NS <br> HV ] <br> \% | ARR <br> FLO <br> [ Tota veh/h | IVAL WS HV ] \% | Deg. Satn <br> v/c | Aver. Delay sec | Level of Service | AVERA OF <br> [ Veh. veh | $\begin{gathered} \text { BACK } \\ \text { EUE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | $\begin{aligned} & \text { EffectiveAI } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$ | ver. No. Cycles | Aver. Speed $\mathrm{km} / \mathrm{h}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L 2 | 156 | 0.0 | 156 | 0.0 | 0.182 | 14.0 | LOS A | 2.3 | 18.3 | 0.49 | 0.68 | 0.49 | 55.9 |
| 2 T1 | 1526 | 17.8 | 1526 | 17.8 | * 0.678 | 42.4 | LOS C | 17.9 | 142.3 | 0.98 | 0.88 | 0.98 | 55.0 |
| Approach | 1682 | 16.1 | 1682 | 16.1 | 0.678 | 39.8 | LOS C | 17.9 | 142.3 | 0.94 | 0.86 | 0.94 | 55.0 |
| East: U-Turn Bay |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 R2 | 1 | 0.0 | 1 |  | 0.004 | 54.5 | LOS D | 0.0 | 0.2 | 0.87 | 0.58 | 0.87 | 40.9 |
| Approach | 1 | 0.0 | 1 |  | 0.004 | 54.5 | LOS D | 0.0 | 0.2 | 0.87 | 0.58 | 0.87 | 40.9 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 1 | 0.0 | 1 | 0.0 | 0.001 | 7.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.60 | 0.00 | 68.5 |
| 8 T1 | 1347 | 15.4 | 1347 | 15.4 | 0.348 | 5.2 | LOS A | 5.9 | 45.9 | 0.34 | 0.30 | 0.34 | 73.6 |
| 9 R2 | 703 | 0.0 | 703 | 0.0 | * 0.670 | 50.2 | LOS D | 12.8 | 89.3 | 0.92 | 0.84 | 0.92 | 45.2 |
| Approach | 2052 | 10.1 | 2052 | 10.1 | 0.670 | 20.6 | LOS B | 12.8 | 89.3 | 0.54 | 0.49 | 0.54 | 58.2 |
| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 406 | 0.0 | 406 | 0.0 | 0.370 | 42.9 | LOS D | 6.2 | 43.4 | 0.84 | 0.78 | 0.84 | 46.1 |
| 12 R2 | 56 | 0.0 | 56 | 0.0 | * 0.104 | 56.7 | LOS E | 0.9 | 6.6 | 0.90 | 0.71 | 0.90 | 19.9 |
| Approach | 462 | 0.0 | 462 | 0.0 | 0.370 | 44.6 | LOS D | 6.2 | 43.4 | 0.84 | 0.77 | 0.84 | 43.9 |
| All Vehicles | 4197 | 11.4 | 4197 | 11.4 | 0.678 | 30.9 | LOS C | 17.9 | 142.3 | 0.73 | 0.67 | 0.73 | 54.8 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov ID Crossing | Dem. Flow ped/h | Aver. <br> Delay <br> sec | Level of Service | AVERA <br> Q <br> [ Ped <br> ped | $\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. <br> m | Aver. Speed $\mathrm{m} / \mathrm{sec}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 59.3 | LOS E | 0.2 | 0.2 | 0.96 | 0.96 | 87.0 | 36.0 | 0.41 |
| P12 Stage 2 | 53 | 59.3 | LOS E | 0.2 | 0.2 | 0.96 | 0.96 | 87.3 | 36.5 | 0.42 |
| P1B Slip/ Bypass | 53 | 27.0 | LOS C | 0.1 | 0.1 | 0.91 | 0.91 | 47.0 | 26.0 | 0.55 |
| East: U-Turn Bay |  |  |  |  |  |  |  |  |  |  |
| P2 Full | 53 | 59.3 | LOS E | 0.2 | 0.2 | 0.96 | 0.96 | 83.1 | 31.0 | 0.37 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 59.3 | LOS E | 0.2 | 0.2 | 0.96 | 0.96 | 92.3 | 43.0 | 0.47 |
| P32 Stage 2 | 53 | 59.3 | LOS E | 0.2 | 0.2 | 0.96 | 0.96 | 88.5 | 38.0 | 0.43 |


| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| P4 Full | 53 | 59.3 | LOS E | 0.2 | 0.2 | 0.96 | 0.96 | 89.3 | 39.0 | 0.44 |
| P4B Slip/ | 53 | 59.3 | LOS E | 0.2 | 0.2 | 0.96 | 0.96 | 82.3 | 30.0 | 0.36 |
| $\quad$ Bypass |  |  |  |  |  |  |  |  |  |  |
| All Pedestrians | 421 | 55.2 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 82.1 | 34.9 | 0.43 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022 11:03:40 AM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4850 [2036 PM TNR - Defence (Site Folder: Scenario 2)] 마 Network: N101 [PM (Network Folder: Scenario 2 (2036))]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=130$ seconds (Network Optimum Cycle Time Minimum Delay)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{gathered} \text { ND } \\ \text { VS } \\ \text { HV ] } \\ \% \\ \hline \end{gathered}$ | ARR FLO [ Tota veh/h | $\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & 1 \mathrm{HV}] \\ & 1 \% \end{aligned}$ | Deg. Satn v/c | Aver. Delay sec | Level of Service | AVER OF [ Veh. veh | BACK <br> EUE <br> Dist ] <br> m | $\begin{aligned} & \text { Prop. } \\ & \text { Que } \end{aligned}$ | EffectiveAv Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| L2 | 1 | 0.0 | 1 | 0.0 | 0.048 | 23.2 | LOS B | 0.6 | 7.8 | 0.47 | 0.39 | 0.47 | 60.5 |
| $2 \quad \mathrm{~T} 1$ | 1721 | 15.9 | 1721 | 15.9 | * 0.857 | 29.4 | LOS C | 29.5 | 231.6 | 0.90 | 0.86 | 0.94 | 50.5 |
| 3 R2 | 2 | 0.0 | 2 | 0.0 | 0.011 | 63.9 | LOS E | 0.1 | 0.5 | 0.92 | 0.62 | 0.92 | 38.7 |
| Approach | 1724 | 15.8 | 1724 | 15.8 | 0.857 | 29.5 | LOS C | 29.5 | 231.6 | 0.90 | 0.86 | 0.94 | 50.4 |
| East: Defence Establishment Orchard Hills |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 16 | 0.0 | 16 | 0.0 | 0.041 | 46.7 | LOS D | 0.5 | 3.6 | 0.81 | 0.68 | 0.81 | 22.2 |
| $5 \quad \mathrm{~T} 1$ | 1 | 0.0 | 1 | 0.0 | * 0.041 | 42.2 | LOS C | 0.5 | 3.6 | 0.81 | 0.68 | 0.81 | 22.2 |
| 6 R2 | 55 | 0.0 | 55 | 0.0 | 0.154 | 50.0 | LOS D | 1.7 | 12.2 | 0.86 | 0.73 | 0.86 | 21.5 |
| Approach | 72 | 0.0 | 72 | 0.0 | 0.154 | 49.1 | LOS D | 1.7 | 12.2 | 0.85 | 0.72 | 0.85 | 21.7 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 18 | 0.0 | 18 | 0.0 | 0.015 | 10.1 | LOS A | 0.1 | 0.5 | 0.12 | 0.64 | 0.12 | 56.3 |
| 8 T1 | 1354 | 15.4 | 1354 | 15.4 | 0.665 | 15.2 | LOS B | 14.0 | 109.4 | 0.57 | 0.52 | 0.57 | 55.9 |
| 9 R2 | 1 | 0.0 | 1 | 0.0 | 0.006 | 68.7 | LOSE | 0.0 | 0.3 | 1.00 | 0.60 | 1.00 | 27.3 |
| Approach | 1373 | 15.1 | 1373 | 15.1 | 0.665 | 15.2 | LOS B | 14.0 | 109.4 | 0.56 | 0.52 | 0.56 | 55.9 |
| West: Entry Boulevard |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 1 | 0.0 | 1 | 0.0 | 0.008 | 52.0 | LOS D | 0.1 | 0.5 | 0.89 | 0.58 | 0.89 | 19.0 |
| 11 T1 | 1 | 0.0 | 1 | 0.0 | 0.008 | 47.4 | LOS D | 0.1 | 0.5 | 0.89 | 0.58 | 0.89 | 28.6 |
| 12 R2 | 1 | 0.0 | 1 | 0.0 | * 0.004 | 49.9 | LOS D | 0.0 | 0.2 | 0.85 | 0.58 | 0.85 | 18.9 |
| Approach | 3 | 0.0 | 3 | 0.0 | 0.008 | 49.7 | LOS D | 0.1 | 0.5 | 0.88 | 0.58 | 0.88 | 23.0 |
| All Vehicles | 3172 | 15.2 | 3172 | 15.2 | 0.857 | 23.8 | LOS B | 29.5 | 231.6 | 0.75 | 0.71 | 0.78 | 51.3 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance

| Mov ID Crossing | Dem. <br> Flow <br> ped/h | Aver. Delay sec | Level of Service | AVERAG <br> [ Ped ped | $\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop Que | Effective Stop Rate | Travel Time sec | Travel Dist. <br> m | Aver. Speed $\mathrm{m} / \mathrm{sec}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 59.3 | LOS E | 0.2 | 0.2 | 0.96 | 0.96 | 88.5 | 38.0 | 0.43 |
| P12 Stage 2 | 53 | 59.3 | LOS E | 0.2 | 0.2 | 0.96 | 0.96 | 86.2 | 35.0 | 0.41 |
| P1B Slip/ Bypass | 53 | 28.1 | LOS C | 0.1 | 0.1 | 0.91 | 0.91 | 48.1 | 26.0 | 0.54 |
| East: Defence Establishment Orchard Hills |  |  |  |  |  |  |  |  |  |  |
| P2 Full | 53 | 59.3 | LOS E | 0.2 | 0.2 | 0.96 | 0.96 | 90.0 | 40.0 | 0.44 |


| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P31 Stage 1 | 53 | 59.3 | LOS E | 0.2 | 0.2 | 0.96 | 0.96 | 89.3 | 39.0 | 0.44 |
| P32 Stage 2 | 53 | 59.3 | LOS E | 0.2 | 0.2 | 0.96 | 0.96 | 86.2 | 35.0 | 0.41 |
| West: Entry Boulevard |  |  |  |  |  |  |  |  |  |  |
| P4 | Full | 53 | 59.3 | LOS E | 0.2 | 0.2 | 0.96 | 0.96 | 87.0 | 36.0 |
| All Pedestrians | 368 | 54.8 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 82.2 | 35.6 | 0.43 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
11:03:40 AM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4851 [2036 PM TNR - Chain-o-Ponds (Site Folder: Scenario 2)]

맘 Network: N101 [PM (Network Folder: Scenario 2 (2036))]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=140$ seconds (Site User-Given Cycle Time)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ |  | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Total veh/h | $\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & \text { IHV] } \\ & \hline \% \end{aligned}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | AVERA OF <br> [ Veh. veh | $\begin{aligned} & \text { EBACK } \\ & \text { EUE } \\ & \text { Dist ] } \\ & \mathrm{m} \end{aligned}$ | Prop. Que | EffectiveA Stop Rate | ver. No Cycles | Aver. Speed <br> km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 1 | 0.0 | 1 | 0.0 | 0.040 | 12.7 | LOS A | 0.4 | 4.5 | 0.34 | 0.28 | 0.34 | 71.0 |
| 2 T1 | 1746 | 14.8 | 1746 | 14.8 | * 0.701 | 14.3 | LOSA | 21.7 | 169.2 | 0.66 | 0.61 | 0.66 | 60.9 |
| Approach | 1747 | 14.8 | 1747 | 14.8 | 0.701 | 14.3 | LOS A | 21.7 | 169.2 | 0.66 | 0.61 | 0.66 | 60.9 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 T1 | 1322 | 15.4 | 1322 | 15.4 | 0.442 | 3.9 | LOS A | 7.6 | 59.5 | 0.31 | 0.29 | 0.31 | 76.8 |
| 9 R2 | 39 | 0.0 | 39 | 0.0 | * 0.226 | 72.1 | LOS F | 1.6 | 10.9 | 0.96 | 0.74 | 0.96 | 32.9 |
| Approach | 1361 | 15.0 | 1361 | 15.0 | 0.442 | 5.9 | LOS A | 7.6 | 59.5 | 0.33 | 0.30 | 0.33 | 75.3 |
| West: Chain-o-Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 20 | 0.0 | 20 | 0.0 | 0.045 | 48.4 | LOS D | 0.6 | 4.5 | 0.80 | 0.69 | 0.80 | 15.4 |
| 12 R 2 | 2 | 0.0 | 2 | 0.0 | 0.011 | 65.6 | LOS E | 0.1 | 0.6 | 0.92 | 0.61 | 0.92 | 34.6 |
| Approach | 22 | 0.0 | 22 | 0.0 | 0.045 | 50.1 | LOS D | 0.6 | 4.5 | 0.81 | 0.68 | 0.81 | 18.7 |
| All Vehicles | 3131 | 14.8 | 3131 | 14.8 | 0.701 | 10.9 | LOS A | 21.7 | 169.2 | 0.52 | 0.48 | 0.52 | 68.7 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov ID Crossing | Dem. Flow ped/h | Aver. Delay <br> sec | Level of Service | AVERAC <br> d <br> ped | $\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. m | Aver. Speed <br> $\mathrm{m} / \mathrm{sec}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 90.0 | 33.5 | 0.37 |
| P12 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P1B Slip/ <br> Bypass | 53 | 36.2 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 56.2 | 26.0 | 0.46 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P32 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 88.9 | 32.0 | 0.36 |
| West: Chain-o-Ponds Road |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| All Pedestrians | 316 | 59.6 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 85.2 | 33.3 | 0.39 |

[^2]SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
11:03:40 AM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4671 [2036 AM TNR - Bradley (Site Folder: Scenario 3)]

마 Network: N101 [AM (Network Folder: Scenario 3
(2036+D))]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=140$ seconds (Network User-Given Cycle Time)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | ND <br> NS HV ] \% | ARRIVAL FLOWS [ Total HV ] veh/h \% | Deg. Satn v/c | Aver. Delay sec | Level of Service | 95\% QU [ Veh. veh | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | EffectiveAv Stop Rate | ver. No. Cycles | Aver. Speed km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 56 | 0.0 | 490.0 | 0.091 | 14.9 | LOS B | 1.3 | 12.5 | 0.36 | 0.54 | 0.36 | 56.0 |
| $2 \quad \mathrm{~T} 1$ | 2242 | 17.0 | 197117.2 | * 0.724 | 11.9 | LOS A | 26.9 | 213.6 | 0.47 | 0.43 | 0.47 | 70.9 |
| Approach | 2298 | 16.6 | $2020_{1}^{\mathrm{N}} 16.8$ | 0.724 | 11.9 | LOS A | 26.9 | 213.6 | 0.47 | 0.44 | 0.47 | 70.7 |
| East: U-Turn Bay |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 R2 | 1 | 0.0 | 10.0 | * 0.013 | 75.3 | LOS F | 0.1 | 0.5 | 0.97 | 0.58 | 0.97 | 34.9 |
| Approach | 1 | 0.0 | 10.0 | 0.013 | 75.3 | LOS F | 0.1 | 0.5 | 0.97 | 0.58 | 0.97 | 34.9 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 1 | 0.0 | 10.0 | 0.001 | 7.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.60 | 0.00 | 68.5 |
| 8 T1 | 1492 | 13.9 | 149213.9 | 0.375 | 4.9 | LOS A | 11.0 | 85.3 | 0.33 | 0.29 | 0.33 | 73.8 |
| 9 R2 | 320 | 0.0 | 3200.0 | 0.388 | 55.7 | LOS D | 9.8 | 68.6 | 0.88 | 0.80 | 0.88 | 43.4 |
| Approach | 1813 | 11.4 | 181311.4 | 0.388 | 13.9 | LOS A | 11.0 | 85.3 | 0.43 | 0.38 | 0.43 | 63.6 |
| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 876 | 0.0 | 8760.0 | * 0.728 | 49.0 | LOS D | 26.3 | 184.0 | 0.95 | 0.86 | 0.95 | 44.2 |
| 12 R 2 | 122 | 0.0 | 1220.0 | 0.246 | 63.6 | LOS E | 3.8 | 26.5 | 0.93 | 0.75 | 0.93 | 18.6 |
| Approach | 998 | 0.0 | 9980.0 | 0.728 | 50.7 | LOS D | 26.3 | 184.0 | 0.94 | 0.85 | 0.94 | 41.9 |
| All Vehicles | 5109 | 11.5 | $4832^{N} 12.2$ | 0.728 | 20.7 | LOS B | 26.9 | 213.6 | 0.55 | 0.50 | 0.55 | 60.4 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov ID Crossing | Dem. Flow ped/h | Aver. Delay sec | Level of Service | AVERA <br> [ Ped | $\begin{gathered} \text { ACK OF } \\ \text { E } \\ \text { Dist ] } \\ \mathrm{m} \end{gathered}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. | Aver. Speed <br> $\mathrm{m} / \mathrm{sec}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P12 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.3 | 36.5 | 0.40 |
| P1B Slip/ <br> Bypass | 53 | 29.6 | LOS C | 0.1 | 0.1 | 0.92 | 0.92 | 49.6 | 26.0 | 0.52 |
| East: U-Turn Bay |  |  |  |  |  |  |  |  |  |  |
| P2 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 88.1 | 31.0 | 0.35 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |


| P31 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 97.3 | 43.0 | 0.44 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| P32 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 93.5 | 38.0 | 0.41 |
| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 94.3 | 39.0 | 0.41 |
| P4B Slip/ <br> $\quad$ Bypass | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 87.3 | 30.0 | 0.34 |
| All Pedestrians | 421 | 59.9 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 86.8 | 34.9 | 0.40 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:53:37 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4850 [2036 AM TNR - Defence (Site Folder: Scenario 3)]

마 Network: N101 [AM (Network Folder: Scenario 3
(2036+D))]

## Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=140$ seconds (Network User-Given Cycle Time)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ |  | ND NS HV ] \% | ARRIVAL FLOWS [ Total HV ] veh/h \% | Deg. Satn v/c | Aver. Delay sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | CK OF UE Dist ] m | Prop. Que | EffectiveA Stop Rate | ver. No. Cycles | Aver Speed km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 51 | 0.0 | 500.0 | 0.107 | 19.4 | LOS B | 2.2 | 20.5 | 0.56 | 0.61 | 0.56 | 60.2 |
| 2 T1 | 1606 | 15.9 | 160315.9 | * 1.228 | 266.5 | LOS F | 127.7 | 1002.8 | 0.99 | 1.91 | 2.36 | 13.1 |
| 3 R2 | 11 | 0.0 | 100.0 | 0.044 | 64.7 | LOS E | 0.6 | 4.4 | 0.90 | 0.68 | 0.90 | 38.5 |
| Approach | 1667 | 15.3 | $1664^{\mathrm{N}} 15.3$ | 1.228 | 257.7 | LOS F | 127.7 | 1002.8 | 0.98 | 1.87 | 2.29 | 12.7 |
| East: Defence Establishment Orchard Hills |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 8 | 0.0 | 80.0 | 0.026 | 53.3 | LOS D | 0.5 | 3.6 | 0.84 | 0.66 | 0.84 | 20.7 |
| $5 \quad \mathrm{~T} 1$ | 1 | 0.0 | 10.0 | 0.026 | 48.7 | LOS D | 0.5 | 3.6 | 0.84 | 0.66 | 0.84 | 20.7 |
| 6 R2 | 25 | 0.0 | 250.0 | * 0.135 | 40.2 | LOS C | 1.2 | 8.1 | 0.89 | 0.70 | 0.89 | 24.2 |
| Approach | 35 | 0.0 | 350.0 | 0.135 | 43.7 | LOS D | 1.2 | 8.1 | 0.88 | 0.68 | 0.88 | 23.1 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 49 | 0.0 | 490.0 | 0.059 | 33.7 | LOS C | 2.3 | 16.3 | 0.74 | 0.74 | 0.74 | 43.8 |
| 8 T1 | 1302 | 15.3 | 130215.3 | 1.052 | 130.5 | LOS F | 76.8 | 598.4 | 0.99 | 1.37 | 1.65 | 17.2 |
| 9 R2 | 294 | 0.0 | 2940.0 | *1.230 | 285.7 | LOS F | 45.5 | 318.5 | 1.00 | 1.36 | 2.49 | 8.5 |
| Approach | 1645 | 12.1 | 164512.1 | 1.230 | 155.3 | LOS F | 76.8 | 598.4 | 0.99 | 1.35 | 1.78 | 14.7 |
| West: Site |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 677 | 0.0 | 6760.0 | 0.401 | 5.2 | LOS A | 4.1 | 29.0 | 0.17 | 0.59 | 0.17 | 42.5 |
| 11 T1 | 1 | 0.0 | 10.0 | * 0.401 | 0.6 | LOS A | 4.1 | 29.0 | 0.17 | 0.59 | 0.17 | 46.3 |
| 12 R 2 | 267 | 0.0 | 2670.0 | 0.447 | 38.8 | LOS C | 13.3 | 92.9 | 0.82 | 0.79 | 0.82 | 21.9 |
| Approach | 945 | 0.0 | $944{ }^{\text {N1 }} 0.0$ | 0.447 | 14.7 | LOS B | 13.3 | 92.9 | 0.35 | 0.64 | 0.35 | 33.6 |
| All Vehicles | 4293 | 10.6 | $4288^{\mathrm{N}} 10.6$ | 1.230 | 163.1 | LOS F | 127.7 | 1002.8 | 0.84 | 1.39 | 1.66 | 14.5 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

N 1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov ID Crossing | Dem. Flow ped/h | Aver. Delay sec | Level of Service | AVERA <br> [ Ped <br> ped | $\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist ] } \\ & \mathrm{m} \end{aligned}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. m | Aver. Speed |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 93.5 | 38.0 | 0.41 |
| P12 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 91.2 | 35.0 | 0.38 |
| P1B Slip/ Bypass | 53 | 30.5 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 50.5 | 26.0 | 0.51 |


| East: Defence Establishment Orchard Hills |  |  | 0.2 | 0.96 | 0.96 | 95.0 | 40.0 | 0.42 |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P2 | Full | 53 | 64.3 | LOS F | 0.2 | 0.2 |  |  |  |  |
| North: The Northern Road |  |  |  | 0.2 | 0.96 | 0.96 | 94.3 | 39.0 | 0.41 |  |
| P31 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 |  |  |  |  |  |
| P32 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.9 | 0.96 | 91.2 | 35.0 | 0.38 |
| West: Site |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| All Pedestrians | 368 | 59.4 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 86.8 | 35.6 | 0.41 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:53:37 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4851 [2036 AM TNR - Chain-o-Ponds (Site Folder: Scenario 3)]

마 Network: N101 [AM
(Network Folder: Scenario 3
(2036+D))]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=140$ seconds (Site User-Given Cycle Time)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{aligned} & \text { DEM } \\ & \text { FLC } \\ & \text { [ Total } \\ & \text { veh/h } \end{aligned}$ | $\begin{gathered} \text { ND } \\ \text { VS } \\ \text { HV ] } \\ \% \end{gathered}$ | ARRIVAL FLOWS [ Total HV ] veh/h \% | Deg. Satn v/c | Aver. Delay sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop. Que | EffectiveAv <br> Stop <br> Rate | ver. No. Cycles | Aver. Speed km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 46 | 0.0 | $46 \quad 0.0$ | 0.109 | 22.3 | LOS B | 2.3 | 22.0 | 0.59 | 0.63 | 0.59 | 56.3 |
| 2 T1 | 1111 | 15.8 | 111115.8 | * 0.738 | 36.8 | LOS C | 31.3 | 243.9 | 0.90 | 0.81 | 0.90 | 44.3 |
| Approach | 1157 | 15.1 | 115715.1 | 0.738 | 36.2 | LOS C | 31.3 | 243.9 | 0.89 | 0.80 | 0.89 | 44.7 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 T1 | 1487 | 15.3 | 143115.3 | 0.563 | 11.3 | LOS A | 23.5 | 183.7 | 0.54 | 0.50 | 0.54 | 71.5 |
| 9 R2 | 161 | 0.0 | 1550.0 | 0.417 | 35.8 | LOS C | 5.8 | 40.9 | 0.92 | 0.79 | 0.92 | 46.8 |
| Approach | 1648 | 13.8 | $1586^{\mathrm{N}} 13.8$ | 0.563 | 13.7 | LOS A | 23.5 | 183.7 | 0.58 | 0.53 | 0.58 | 69.5 |
| West: Chain-o-Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 587 | 0.0 | 5840.0 | * 0.747 | 30.7 | LOS C | 28.0 | 196.3 | 0.77 | 0.81 | 0.77 | 20.7 |
| 12 R2 | 184 | 0.0 | 1830.0 | 0.440 | 55.3 | LOS D | 10.8 | 75.7 | 0.91 | 0.80 | 0.91 | 37.5 |
| Approach | 772 | 0.0 | $767^{\mathrm{N} 1} 0.0$ | 0.747 | 36.6 | LOS C | 28.0 | 196.3 | 0.81 | 0.81 | 0.81 | 27.9 |
| All Vehicles | 3577 | 11.2 | $3509^{\mathrm{N}} 11.5$ | 0.747 | 26.1 | LOS B | 31.3 | 243.9 | 0.73 | 0.68 | 0.73 | 54.9 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov <br> ID Crossing | Dem. Flow ped/h | Aver. Delay $\mathrm{sec}$ | Level of Service | AVERAG <br> [Ped <br> ped | $\begin{gathered} \text { ACK OF } \\ \text { E } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. <br> m | Aver. Speed $\mathrm{m} / \mathrm{sec}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 31.2 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 56.9 | 33.5 | 0.59 |
| P12 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P1B Slip/ Bypass | 53 | 29.7 | LOS C | 0.1 | 0.1 | 0.92 | 0.92 | 49.7 | 26.0 | 0.52 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P32 Stage 2 | 53 | 31.2 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 55.8 | 32.0 | 0.57 |
| West: Chain-o-Ponds Road |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| All Pedestrians | 316 | 47.5 | LOS E | 0.2 | 0.2 | 0.94 | 0.94 | 73.0 | 33.3 | 0.46 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:53:37 PM
Project: X:I17285 Mulgoa Planning Proposal\07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

$\nabla$ Site: 6 [6 AM (Site Folder: Scenario 3)]
마 Network: N101 [AM (Network Folder: Scenario 3
(2036+D))]
Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{ll} \text { Mov Turn } \\ \text { ID } \end{array}$ |  | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Total veh/h | $\begin{gathered} \text { VAL } \\ \text { WS } \\ \text { HV ] } \\ \% \end{gathered}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | K OF JE Dist ] m | Prop. Que | Effective A Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| East: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $5 \quad \mathrm{~T} 1$ | 105 | 1.0 | 104 | 1.0 | 0.053 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 60.0 |
| 6 R2 | 47 | 1.0 | 47 | 1.0 | 0.025 | 5.5 | LOS A | 0.0 | 0.0 | 0.00 | 0.60 | 0.00 | 51.8 |
| Approach | 153 | 1.0 | $150{ }^{\text {N1 }}$ | 1.0 | 0.053 | 1.7 | NA | 0.0 | 0.0 | 0.00 | 0.19 | 0.00 | 57.2 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 194 | 1.0 | 194 | 1.0 | 0.140 | 5.7 | LOS A | 0.6 | 4.3 | 0.12 | 0.55 | 0.12 | 50.2 |
| 9 R2 | 16 | 1.0 | 16 | 1.0 | 0.140 | 6.7 | LOS A | 0.6 | 4.3 | 0.12 | 0.55 | 0.12 | 52.7 |
| Approach | 209 | 1.0 | 209 | 1.0 | 0.140 | 5.8 | LOS A | 0.6 | 4.3 | 0.12 | 0.55 | 0.12 | 50.5 |
| West: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 5 | 1.0 | 5 | 1.0 | 0.042 | 5.7 | LOS A | 0.2 | 1.4 | 0.16 | 0.11 | 0.16 | 57.1 |
| 11 T1 | 43 | 1.0 | 43 | 1.0 | 0.042 | 0.3 | LOS A | 0.2 | 1.4 | 0.16 | 0.11 | 0.16 | 57.5 |
| Approach | 48 | 1.0 | 48 | 1.0 | 0.042 | 0.9 | NA | 0.2 | 1.4 | 0.16 | 0.11 | 0.16 | 57.4 |
| All Vehicles | 411 | 1.0 | $408{ }^{\text {N1 }}$ | 1.0 | 0.140 | 3.7 | NA | 0.6 | 4.3 | 0.08 | 0.36 | 0.08 | 54.1 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.
SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:53:37 PM
Project: X:\17285 Mulgoa Planning Proposal107 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

$\nabla$ Site: 7 [7 AM (Site Folder: Scenario 3)]
마 Network: N101 [AM (Network Folder: Scenario 3
(2036+D))]
Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{ll} \text { Mov Turn } \\ \text { ID } \end{array}$ | $\begin{gathered} \text { DEMA } \\ \text { FLOI } \\ \text { [ Total } \\ \text { veh/h } \end{gathered}$ | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Tota veh/h | $\begin{gathered} \text { VAL } \\ \text { WS } \\ \text { HV ] } \\ \% \end{gathered}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | K OF JE Dist ] m | Prop. Que | Effective A Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| East: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $5 \quad \mathrm{~T} 1$ | 74 | 1.0 | 72 | 1.0 | 0.037 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 60.0 |
| 6 R2 | 49 | 1.0 | 48 | 1.0 | 0.026 | 5.5 | LOS A | 0.0 | 0.0 | 0.00 | 0.60 | 0.00 | 51.9 |
| Approach | 123 | 1.0 | $120{ }^{\text {N1 }}$ | 1.0 | 0.037 | 2.2 | NA | 0.0 | 0.0 | 0.00 | 0.24 | 0.00 | 56.4 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 193 | 1.0 | 189 | 1.0 | 0.239 | 6.4 | LOS A | 1.1 | 7.6 | 0.39 | 0.63 | 0.39 | 37.4 |
| 9 R2 | 80 | 1.0 | 78 | 1.0 | 0.239 | 8.1 | LOS A | 1.1 | 7.6 | 0.39 | 0.63 | 0.39 | 37.4 |
| Approach | 273 | 1.0 | $267{ }^{\text {N1 }}$ | 1.0 | 0.239 | 6.9 | LOS A | 1.1 | 7.6 | 0.39 | 0.63 | 0.39 | 37.4 |
| West: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 21 | 1.0 | 21 | 1.0 | 0.210 | 5.8 | LOS A | 1.1 | 7.9 | 0.19 | 0.12 | 0.19 | 56.2 |
| 11 T1 | 218 | 1.0 | 218 | 1.0 | 0.210 | 0.4 | LOS A | 1.1 | 7.9 | 0.19 | 0.12 | 0.19 | 56.2 |
| Approach | 239 | 1.0 | 239 | 1.0 | 0.210 | 0.9 | NA | 1.1 | 7.9 | 0.19 | 0.12 | 0.19 | 56.2 |
| All Vehicles | 635 | 1.0 | $626^{\mathrm{N} 1}$ | 1.0 | 0.239 | 3.7 | NA | 1.1 | 7.9 | 0.24 | 0.36 | 0.24 | 49.8 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.
SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:53:37 PM
Project: X:\17285 Mulgoa Planning Proposal107 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

B Site: 8 [8 AM (Site Folder: Scenario 3)]
마 Network: N101 [AM (Network Folder: Scenario 3
(2036+D))]
Site Category: (None)
Roundabout

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{gathered} \text { AND } \\ \text { WS } \\ \text { HV ] } \\ \% \end{gathered}$ | ARRIVAL FLOWS [ Total HV ] veh/h \% | Deg. <br> Satn v/c | Aver. Delay sec | Level of Service | $\begin{gathered} 95 \% \text { E } \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \hline \end{gathered}$ | Prop. Que | EffectiveA Stop Rate | ver. No. Cycles | Aver. Speed km/h |
| East: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 T1 | 98 | 1.0 | 951.0 | 0.141 | 4.6 | LOS A | 0.7 | 5.7 | 0.11 | 0.55 | 0.11 | 43.7 |
| 6 R2 | 93 | 1.0 | 901.0 | 0.141 | 8.6 | LOS A | 0.7 | 5.7 | 0.11 | 0.55 | 0.11 | 43.7 |
| 6 u U | 11 | 100.0 | $\begin{array}{cc} 11 & 100 . \\ 0 \end{array}$ | 0.141 | 12.3 | LOS A | 0.7 | 5.7 | 0.11 | 0.55 | 0.11 | 43.7 |
| Approach | 201 | 6.2 | $195{ }^{\text {N1 }} 6.4$ | 0.141 | 6.8 | LOS A | 0.7 | 5.7 | 0.11 | 0.55 | 0.11 | 43.7 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 329 | 1.0 | 3241.0 | 0.369 | 7.0 | LOS A | 2.4 | 17.1 | 0.65 | 0.72 | 0.65 | 46.3 |
| 9 R2 | 27 | 1.0 | 271.0 | 0.369 | 11.4 | LOS A | 2.4 | 17.1 | 0.65 | 0.72 | 0.65 | 46.3 |
| Approach | 357 | 1.0 | $351{ }^{\text {N1 }} 1.0$ | 0.369 | 7.4 | LOS A | 2.4 | 17.1 | 0.65 | 0.72 | 0.65 | 46.3 |
| West: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 19 | 1.0 | 191.0 | 0.319 | 4.9 | LOS A | 2.3 | 16.4 | 0.33 | 0.46 | 0.33 | 51.1 |
| 11 T1 | 406 | 1.0 | 4051.0 | 0.319 | 5.2 | LOSA | 2.3 | 16.4 | 0.33 | 0.46 | 0.33 | 51.1 |
| Approach | 425 | 1.0 | $424{ }^{\text {N1 }} 1.0$ | 0.319 | 5.2 | LOS A | 2.3 | 16.4 | 0.33 | 0.46 | 0.33 | 51.1 |
| All Vehicles | 983 | 2.1 | $971{ }^{\text {N1 }} 2.1$ | 0.369 | 6.3 | LOS A | 2.4 | 17.1 | 0.40 | 0.57 | 0.40 | 48.4 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.
SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd \| sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:53:37 PM
Project: X:117285 Mulgoa Planning Proposall07 Modelling Files12022117285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

$\nabla$ Site: 9 [9 AM (Site Folder: Scenario 3)]
마 Network: N101 [AM (Network Folder: Scenario 3
(2036+D))]
Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{gathered} \text { DEMA } \\ \text { FLOV } \\ \text { [ Total } \\ \text { veh/h } \end{gathered}$ | $\begin{gathered} \text { ND } \\ \text { VS } \\ \text { HV ] } \\ \% \end{gathered}$ | ARRI FLO [ Tota veh/h | IVAL <br> WS <br> HV ] <br> \% | Deg. Satn <br> v/c | Aver. Delay sec | Level of Service | $\begin{gathered} 95 \% \text { B B } \\ \text { QU } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop. Que | Effective Av Stop Rate | ver. No. Cycles | Aver. Speed km/h |
| South: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 T1 | 29 | 1.0 | 29 | 1.0 | 0.033 | 0.1 | LOS A | 0.1 | 1.0 | 0.12 | 0.29 | 0.12 | 46.7 |
| 3 R2 | 31 | 1.0 | 30 | 1.0 | 0.033 | 5.6 | LOS A | 0.1 | 1.0 | 0.12 | 0.29 | 0.12 | 46.7 |
| Approach | 60 | 1.0 | $59^{\text {N1 }}$ | 1.0 | 0.033 | 2.9 | NA | 0.1 | 1.0 | 0.12 | 0.29 | 0.12 | 46.7 |
| East: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 26 | 1.0 | 25 | 1.1 | 0.017 | 5.7 | LOS A | 0.1 | 0.5 | 0.12 | 0.54 | 0.12 | 50.1 |
| 6 R2 | 1 | 1.0 | 1 | 1.1 | 0.017 | 5.8 | LOS A | 0.1 | 0.5 | 0.12 | 0.54 | 0.12 | 50.1 |
| Approach | 27 | 1.0 | $26{ }^{\text {N1 }}$ | 1.1 | 0.017 | 5.7 | LOS A | 0.1 | 0.5 | 0.12 | 0.54 | 0.12 | 50.1 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 4 | 1.0 | 4 | 1.1 | 0.027 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.05 | 0.00 | 57.7 |
| 8 T1 | 52 | 1.0 | 48 | 1.1 | 0.027 | 0.0 | LOSA | 0.0 | 0.0 | 0.00 | 0.05 | 0.00 | 57.7 |
| Approach | 56 | 1.0 | $52{ }^{\text {N1 }}$ | 1.1 | 0.027 | 0.4 | NA | 0.0 | 0.0 | 0.00 | 0.05 | 0.00 | 57.7 |
| All Vehicles | 143 | 1.0 | $136{ }^{\text {N1 }}$ | 1.1 | 0.033 | 2.5 | NA | 0.1 | 1.0 | 0.07 | 0.24 | 0.07 | 50.7 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.
SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:53:37 PM
Project: X:\17285 Mulgoa Planning Proposal107 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{aligned} & \text { DEMA } \\ & \text { FLOV } \\ & \text { [ Total } \\ & \text { veh/h } \end{aligned}$ | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Total veh/h | $\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & 1 \mathrm{HV} \text { ] } \end{aligned}$ | Deg. Satn <br> v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | K OF <br> JE <br> Dist] <br> m | Prop. Que | EffectiveA Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 1 | 1.0 | 1 | 1.0 | 0.057 | 5.6 | LOS A | 0.2 | 1.3 | 0.19 | 0.58 | 0.19 | 48.0 |
| 3 R2 | 66 | 1.0 | 65 | 1.0 | 0.057 | 5.9 | LOS A | 0.2 | 1.3 | 0.19 | 0.58 | 0.19 | 48.0 |
| Approach | 67 | 1.0 | $66^{\mathrm{N} 1}$ | 1.0 | 0.057 | 5.9 | LOS A | 0.2 | 1.3 | 0.19 | 0.58 | 0.19 | 48.0 |
| East: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 84 | 1.0 | 79 | 1.1 | 0.059 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.42 | 0.00 | 55.6 |
| $5 \quad$ T1 | 34 | 1.0 | 31 | 1.1 | 0.059 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.42 | 0.00 | 55.6 |
| Approach | 118 | 1.0 | $110^{\mathrm{N} 1}$ | 1.1 | 0.059 | 4.0 | NA | 0.0 | 0.0 | 0.00 | 0.42 | 0.00 | 55.6 |
| West: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 T1 | 42 | 1.0 | 41 | 1.0 | 0.025 | 0.1 | LOS A | 0.0 | 0.3 | 0.06 | 0.08 | 0.06 | 58.1 |
| 12 R 2 | 6 | 1.0 | 6 | 1.0 | 0.025 | 5.8 | LOS A | 0.0 | 0.3 | 0.06 | 0.08 | 0.06 | 58.1 |
| Approach | 48 | 1.0 | 48 | 1.0 | 0.025 | 0.8 | NA | 0.0 | 0.3 | 0.06 | 0.08 | 0.06 | 58.1 |
| All Vehicles | 234 | 1.0 | $224{ }^{\text {N1 }}$ | 1.0 | 0.059 | 3.9 | NA | 0.2 | 1.3 | 0.07 | 0.39 | 0.07 | 54.4 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.
SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:53:37 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

$\nabla$ Site: 11 [11 AM (Site Folder: Scenario 3)]
마 Network: N101 [AM (Network Folder: Scenario 3
(2036+D))]
New Site
Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{gathered} \text { DEMA } \\ \text { FLOV } \\ \text { [ Total } \\ \text { veh/h } \end{gathered}$ | $\begin{gathered} \text { ND } \\ \text { VS } \\ \text { HV ] } \\ \% \end{gathered}$ | ARRI FLO [ Total veh/h | VAL NS HV ] \% | Deg. Satn <br> v/c | Aver. Delay sec | Level of Service | $\begin{gathered} 95 \% \text { B B } \\ \text { QU } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \hline \end{gathered}$ | Prop. Que | Effective Av Stop Rate | ver. No. Cycles | Aver. Speed km/h |
| South: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 1 | 1.0 | 1 | 1.0 | 0.016 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.02 | 0.00 | 57.2 |
| 2 T1 | 29 | 1.0 | 29 | 1.0 | 0.016 | 0.0 | LOSA | 0.0 | 0.0 | 0.00 | 0.02 | 0.00 | 58.9 |
| Approach | 31 | 1.0 | $30^{\mathrm{N} 1}$ | 1.0 | 0.016 | 0.2 | NA | 0.0 | 0.0 | 0.00 | 0.02 | 0.00 | 58.7 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 T1 | 52 | 1.0 | 47 | 1.1 | 0.042 | 0.0 | LOS A | 0.1 | 1.0 | 0.07 | 0.22 | 0.07 | 57.1 |
| 9 R2 | 32 | 1.0 | 29 | 1.1 | 0.042 | 5.5 | LOS A | 0.1 | 1.0 | 0.07 | 0.22 | 0.07 | 56.5 |
| Approach | 83 | 1.0 | $76{ }^{\text {N1 }}$ | 1.1 | 0.042 | 2.1 | NA | 0.1 | 1.0 | 0.07 | 0.22 | 0.07 | 56.8 |
| West: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 53 | 1.0 | 53 | 1.0 | 0.037 | 5.6 | LOS A | 0.1 | 1.0 | 0.09 | 0.55 | 0.09 | 50.4 |
| 12 R 2 | 4 | 1.0 | 4 | 1.0 | 0.037 | 5.8 | LOS A | 0.1 | 1.0 | 0.09 | 0.55 | 0.09 | 50.4 |
| Approach | 57 | 1.0 | 57 | 1.0 | 0.037 | 5.6 | LOS A | 0.1 | 1.0 | 0.09 | 0.55 | 0.09 | 50.4 |
| All Vehicles | 171 | 1.0 | $163{ }^{\text {N1 }}$ | 1.0 | 0.042 | 3.0 | NA | 0.1 | 1.0 | 0.06 | 0.30 | 0.06 | 55.0 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.
SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:53:37 PM
Project: X:\17285 Mulgoa Planning Proposal107 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

S Site: 12 [12 AM (Site Folder: Scenario 3)]
마 Network: N101 [AM (Network Folder: Scenario 3
(2036+D))]
Site Category: (None)
Roundabout

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{gathered} \text { ND } \\ \text { VS } \\ \text { HV ] } \\ \% \\ \hline \end{gathered}$ | ARRI FLO [ Total veh/h | VAL WS HV ] \% | Deg. Satn v/c | Aver. Delay sec | Level of Service | 95\% $\qquad$ <br> [ Veh. veh | $\begin{gathered} \text { K OF } \\ \text { JE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | Effective Stop Rate | ver. No. Cycles | Aver. Speed km/h |
| South: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 1 | 1.0 | 1 | 1.0 | 0.117 | 4.7 | LOS A | 0.6 | 4.2 | 0.34 | 0.62 | 0.34 | 46.4 |
| 2 T1 | 14 | 1.0 | 14 | 1.0 | 0.117 | 4.9 | LOS A | 0.6 | 4.2 | 0.34 | 0.62 | 0.34 | 52.5 |
| 3 R 2 | 125 | 1.0 | 125 | 1.0 | 0.117 | 9.6 | LOS A | 0.6 | 4.2 | 0.34 | 0.62 | 0.34 | 46.4 |
| Approach | 140 | 1.0 | 140 | 1.0 | 0.117 | 9.1 | LOS A | 0.6 | 4.2 | 0.34 | 0.62 | 0.34 | 47.3 |
| East: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 32 | 1.0 | 28 | 1.1 | 0.119 | 4.0 | LOS A | 0.7 | 4.8 | 0.16 | 0.50 | 0.16 | 53.6 |
| $5 \quad \mathrm{~T} 1$ | 93 | 1.0 | 83 | 1.1 | 0.119 | 4.3 | LOSA | 0.7 | 4.8 | 0.16 | 0.50 | 0.16 | 49.9 |
| 6 R2 | 67 | 1.0 | 60 | 1.1 | 0.119 | 8.9 | LOSA | 0.7 | 4.8 | 0.16 | 0.50 | 0.16 | 54.9 |
| Approach | 192 | 1.0 | $171{ }^{\text {N1 }}$ | 1.1 | 0.119 | 5.9 | LOS A | 0.7 | 4.8 | 0.16 | 0.50 | 0.16 | 52.9 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 100 | 1.0 | 100 | 1.0 | 0.137 | 6.0 | LOS A | 0.8 | 5.3 | 0.54 | 0.64 | 0.54 | 48.8 |
| 8 T1 | 5 | 1.0 | 5 | 1.0 | 0.137 | 6.2 | LOS A | 0.8 | 5.3 | 0.54 | 0.64 | 0.54 | 54.3 |
| 9 R2 | 31 | 1.0 | 31 | 1.0 | 0.137 | 10.8 | LOSA | 0.8 | 5.3 | 0.54 | 0.64 | 0.54 | 48.8 |
| Approach | 136 | 1.0 | 136 | 1.0 | 0.137 | 7.1 | LOS A | 0.8 | 5.3 | 0.54 | 0.64 | 0.54 | 49.1 |
| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 66 | 1.0 | 66 | 1.0 | 0.292 | 5.0 | LOS A | 1.8 | 12.5 | 0.43 | 0.51 | 0.43 | 54.9 |
| 11 T1 | 282 | 1.0 | 282 | 1.0 | 0.292 | 5.2 | LOS A | 1.8 | 12.5 | 0.43 | 0.51 | 0.43 | 52.9 |
| 12 R 2 | 1 | 1.0 | 1 | 1.0 | 0.292 | 9.9 | LOS A | 1.8 | 12.5 | 0.43 | 0.51 | 0.43 | 55.9 |
| Approach | 349 | 1.0 | 349 | 1.0 | 0.292 | 5.2 | LOS A | 1.8 | 12.5 | 0.43 | 0.51 | 0.43 | 53.5 |
| All Vehicles | 817 | 1.0 | $796{ }^{\text {N1 }}$ | 1.0 | 0.292 | 6.3 | LOS A | 1.8 | 12.5 | 0.37 | 0.55 | 0.37 | 51.9 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022 1:53:37 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

마 Network: N101 [AM (Network Folder: Scenario 3
(2036+D))]

Site Category: (None)
Roundabout


Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022 1:53:37 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4671 [2036 PM TNR - Bradley (Site Folder: Scenario 3)]
마 Network: N101 [PM (Network Folder: Scenario 3 (2036+D))]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=140$ seconds (Network User-Given Cycle Time)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | DEM <br> FLO [ Total veh/h | ND <br> VS <br> HV ] <br> \% | ARRIVAL FLOWS [ Total HV ] veh/h \% | Deg. Satn <br> v/c | Aver. Delay sec | Level of Service | AVERA OF [ Veh. veh | $\begin{gathered} \text { BACK } \\ \text { EUE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | EffectiveA Stop Rate | ver. No. Cycles | Aver. Speed km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L 2 | 171 | 0.0 | 1090.0 | 0.168 | 19.0 | LOS B | 1.8 | 15.4 | 0.66 | 0.71 | 0.66 | 53.1 |
| 2 T1 | 1944 | 17.0 | 124717.4 | 0.646 | 58.1 | LOS E | 16.7 | 132.3 | 0.99 | 0.87 | 0.99 | 49.4 |
| Approach | 2115 | 15.6 | $1356^{\mathrm{N}} 16.0$ | 0.646 | 55.0 | LOS D | 16.7 | 132.3 | 0.96 | 0.86 | 0.96 | 49.4 |
| East: U-Turn Bay |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 R2 | 1 | 0.0 | 10.0 | 0.004 | 59.7 | LOS E | 0.0 | 0.3 | 0.88 | 0.59 | 0.88 | 39.2 |
| Approach | 1 | 0.0 | 10.0 | 0.004 | 59.7 | LOS E | 0.0 | 0.3 | 0.88 | 0.59 | 0.88 | 39.2 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 1 | 0.0 | 10.0 | 0.001 | 7.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.60 | 0.00 | 68.5 |
| 8 T1 | 2765 | 14.7 | 276514.7 | * 1.024 | 63.6 | LOS E | 64.5 | 504.8 | 0.84 | 1.04 | 1.15 | 38.5 |
| 9 R2 | 784 | 0.0 | 7840.0 | 0.653 | 31.1 | LOS C | 9.9 | 69.4 | 0.89 | 0.83 | 0.89 | 52.1 |
| Approach | 3551 | 11.5 | 355111.5 | 1.024 | 56.4 | LOS D | 64.5 | 504.8 | 0.85 | 0.99 | 1.09 | 41.4 |
| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 406 | 0.0 | 4060.0 | 0.324 | 24.9 | LOS B | 4.2 | 29.3 | 0.78 | 0.76 | 0.78 | 52.8 |
| 12 R 2 | 56 | 0.0 | 560.0 | * 0.183 | 64.2 | LOS E | 1.3 | 8.8 | 0.92 | 0.73 | 0.92 | 18.5 |
| Approach | 462 | 0.0 | 4620.0 | 0.324 | 29.7 | LOS C | 4.2 | 29.3 | 0.80 | 0.75 | 0.80 | 49.3 |
| All Vehicles | 6128 | 12.0 | $5370^{\mathrm{N}} 13.7$ | 1.024 | 53.8 | LOS D | 64.5 | 504.8 | 0.87 | 0.94 | 1.04 | 44.4 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{\text {ID }}^{\text {Mov }} \text { Crossing }$ | Dem. Flow ped/h | Aver. Delay sec | Level of Service | AVERAG <br> [ Ped ped | $\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist ] } \\ & \mathrm{m} \end{aligned}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. <br> m | Aver. Speed <br> $\mathrm{m} / \mathrm{sec}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 33.1 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 60.8 | 36.0 | 0.59 |
| P12 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.3 | 36.5 | 0.40 |
| P1B Slip/ Bypass | 53 | 30.9 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 50.9 | 26.0 | 0.51 |
| East: U-Turn Bay |  |  |  |  |  |  |  |  |  |  |
| P2 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 88.1 | 31.0 | 0.35 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 97.3 | 43.0 | 0.44 |


| P32 Stage 2 | 53 | 33.1 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 62.3 | 38.0 | 0.61 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 94.3 | 39.0 | 0.41 |
| P4B Slip/ Bypass | 53 | 29.7 | LOS C | 0.1 | 0.1 | 0.92 | 0.92 | 52.7 | 30.0 | 0.57 |
| All Pedestrians | 421 | 48.0 | LOS E | 0.2 | 0.2 | 0.94 | 0.94 | 74.9 | 34.9 | 0.47 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:46:13 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4850 [2036 PM TNR - Defence (Site Folder: Scenario 3)]
마 Network: N101 [PM (Network Folder: Scenario 3 (2036+D))]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=140$ seconds (Network User-Given Cycle Time)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ |  | ND VS <br> HV ] \% | ARRIVAL FLOWS [ Total HV ] veh/h \% | Deg. Satn v/c | Aver. Delay sec | Level of Service | AVER <br> OF <br> [ Veh. <br> veh | BACK EUE Dist ] | Prop. Que | EffectiveA <br> Stop <br> Rate | ver. No. Cycles | Aver. Speed km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 156 | 0.0 | 1290.0 | 0.207 | 17.1 | LOS B | 2.2 | 18.0 | 0.56 | 0.69 | 0.56 | 61.1 |
| 2 T 1 | 1894 | 15.7 | 157716.0 | * 1.409 | 420.5 | LOS F | 97.1 | 762.6 | 0.99 | 2.28 | 2.98 | 9.2 |
| 3 R2 | 2 | 0.0 | 20.0 | 0.006 | 59.8 | LOSE | 0.1 | 0.4 | 0.86 | 0.62 | 0.86 | 39.8 |
| Approach | 2052 | 14.5 | $1709_{1}^{\mathrm{N}} 14.8$ | 1.409 | 389.6 | LOS F | 97.1 | 762.6 | 0.96 | 2.16 | 2.79 | 8.9 |
| East: Defence Establishment Orchard Hills |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 16 | 0.0 | 160.0 | 0.038 | 47.5 | LOS D | 0.5 | 3.7 | 0.79 | 0.67 | 0.79 | 22.0 |
| 5 T1 | 1 | 0.0 | 0.0 | 0.038 | 42.9 | LOS D | 0.5 | 3.7 | 0.79 | 0.67 | 0.79 | 22.0 |
| 6 R2 | 55 | 0.0 | 550.0 | 0.189 | 56.7 | LOSE | 1.9 | 13.6 | 0.88 | 0.74 | 0.88 | 20.0 |
| Approach | 72 | 0.0 | $72 \quad 0.0$ | 0.189 | 54.5 | LOS D | 1.9 | 13.6 | 0.86 | 0.72 | 0.86 | 20.4 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 18 | 0.0 | $18 \quad 0.0$ | 0.016 | 13.0 | LOS A | 0.1 | 0.9 | 0.19 | 0.65 | 0.19 | 54.4 |
| 8 T1 | 1940 | 15.1 | 194015.1 | 1.232 | 254.5 | LOS F | 98.5 | 770.0 | 0.99 | 1.95 | 2.32 | 10.1 |
| 9 R2 | 832 | 0.0 | 8320.0 | *1.424 | 425.6 | LOS F | 86.3 | 604.0 | 1.00 | 1.61 | 3.03 | 5.7 |
| Approach | 2789 | 10.5 | 278910.5 | 1.424 | 304.0 | LOS F | 98.5 | 770.0 | 0.99 | 1.84 | 2.52 | 8.0 |
| West: Site |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 260 | 0.0 | 2430.0 | 0.156 | 6.0 | LOS A | 1.5 | 10.3 | 0.20 | 0.59 | 0.20 | 41.6 |
| 11 T1 | 1 | 0.0 | 0.0 | * 0.156 | 1.5 | LOS A | 1.5 | 10.3 | 0.20 | 0.59 | 0.20 | 45.8 |
| 12 R 2 | 127 | 0.0 | 1190.0 | * 0.469 | 62.0 | LOSE | 4.6 | 32.0 | 0.95 | 0.84 | 0.95 | 16.4 |
| Approach | 388 | 0.0 | $363{ }^{\mathrm{N} 1} 0.0$ | 0.469 | 24.4 | LOS B | 4.6 | 32.0 | 0.44 | 0.67 | 0.44 | 27.6 |
| All Vehicles | 5301 | 11.1 | $4933^{\mathrm{N}} 12.0$ | 1.424 | 309.4 | LOS F | 98.5 | 770.0 | 0.94 | 1.85 | 2.44 | 8.7 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov ID Crossing | Dem. Flow ped/h | Aver. <br> Delay <br> sec | Level of Service | AVERAG <br> [ Ped ped | $\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. m | Aver. Speed $\mathrm{m} / \mathrm{sec}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 93.5 | 38.0 | 0.41 |
| P12 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 91.2 | 35.0 | 0.38 |
| P1B Slip/ <br> Bypass | 53 | 32.2 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 52.2 | 26.0 | 0.50 |
| East: Defence Establishment Orchard Hills |  |  |  |  |  |  |  |  |  |  |


| P2 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 95.0 | 40.0 | 0.42 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 94.3 | 39.0 | 0.41 |
| P32 Stage 2 | 53 | 29.8 | LOS C | 0.1 | 0.1 | 0.92 | 0.92 | 56.7 | 35.0 | 0.62 |
| West: Site |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| All Pedestrians | 368 | 54.8 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 82.1 | 35.6 | 0.43 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:46:13 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4851 [2036 PM TNR - Chain-o-Ponds (Site Folder: Scenario 3)]

무 Network: N101 [PM (Network Folder: Scenario 3 (2036+D))]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=140$ seconds (Site User-Given Cycle Time)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{gathered} \text { DEM } \\ \text { FLO } \\ \text { [ Total } \\ \text { veh/h } \end{gathered}$ | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARRIVAL FLOWS [ Total HV ] veh/h \% | Deg. Satn <br> v/c | Aver. <br> Delay <br> sec | Level of Service | AVERA OF [ Veh. veh | $\begin{gathered} \text { BACK } \\ \text { EUE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | EffectiveA Stop Rate | er. No. Cycles | Aver. Speed km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L 2 | 122 | 0.0 | 1220.0 | 0.143 | 14.8 | LOS B | 2.1 | 17.3 | 0.42 | 0.63 | 0.42 | 62.0 |
| 2 T1 | 1905 | 14.8 | 190514.8 | * 1.173 | 218.0 | LOS F | 86.0 | 671.0 | 0.99 | 1.84 | 2.13 | 14.2 |
| Approach | 2027 | 13.9 | 202713.9 | 1.173 | 205.8 | LOS F | 86.0 | 671.0 | 0.96 | 1.76 | 2.03 | 14.3 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 T1 | 1376 | 15.4 | 102415.6 | 0.339 | 3.5 | LOS A | 5.2 | 40.3 | 0.27 | 0.25 | 0.27 | 77.2 |
| 9 R2 | 699 | 0.0 | 5190.0 | * 1.163 | 229.0 | LOS F | 44.6 | 312.3 | 1.00 | 1.29 | 2.18 | 14.0 |
| Approach | 2075 | 10.2 | $1543^{\mathrm{N}} 10.4$ | 1.163 | 79.3 | LOS F | 44.6 | 312.3 | 0.52 | 0.60 | 0.91 | 39.5 |
| West: Chain-o-Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 189 | 0.0 | 1750.0 | 0.271 | 35.9 | LOS C | 5.0 | 34.8 | 0.73 | 0.75 | 0.73 | 18.8 |
| 12 R2 | 57 | 0.0 | 530.0 | * 0.280 | 68.9 | LOS E | 2.1 | 14.6 | 0.96 | 0.75 | 0.96 | 33.8 |
| Approach | 246 | 0.0 | $228{ }^{\mathrm{N} 1} 0.0$ | 0.280 | 43.5 | LOS D | 5.0 | 34.8 | 0.78 | 0.75 | 0.78 | 25.1 |
| All Vehicles | 4348 | 11.4 | $3799^{\mathrm{N}} 13.0$ | 1.173 | 144.6 | LOS F | 86.0 | 671.0 | 0.77 | 1.23 | 1.50 | 22.5 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov ID Crossing | Dem. Flow ped/h | Aver. <br> Delay <br> sec | Level of Service | AVERA <br> [ Ped ped | $\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. $\qquad$ m | Aver. Speed $\mathrm{m} / \mathrm{sec}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 90.0 | 33.5 | 0.37 |
| P12 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P1B Slip/ Bypass | 53 | 30.0 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 50.0 | 26.0 | 0.52 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P32 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 88.9 | 32.0 | 0.36 |
| West: Chain-o-Ponds Road |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| All Pedestrians | 316 | 58.6 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 84.1 | 33.3 | 0.40 |

[^3]Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:46:13 PM
Project: X:\17285 Mulgoa Planning Proposal\07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn |  | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Total veh/h | $\begin{gathered} \text { VAL } \\ \text { WS } \\ \text { HV ] } \\ \% \end{gathered}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} \text { AVER, } \\ \text { OF } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{gathered} \text { EBACK } \\ \text { EUE } \\ \text { Dist ] } \\ \mathrm{m} \end{gathered}$ | Prop. Que | EffectiveA Stop Rate | ver. No Cycles | Aver. Speed <br> km/h |
| East: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $5 \quad \mathrm{~T} 1$ | 34 | 1.0 | 25 | 1.4 | 0.013 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 60.0 |
| 6 R2 | 208 | 1.0 | 152 | 1.4 | 0.083 | 5.5 | LOS A | 0.0 | 0.0 | 0.00 | 0.60 | 0.00 | 51.8 |
| Approach | 242 | 1.0 | $177{ }^{\text {N1 }}$ | 1.4 | 0.083 | 4.7 | NA | 0.0 | 0.0 | 0.00 | 0.52 | 0.00 | 52.8 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 56 | 1.0 | 56 | 1.0 | 0.044 | 5.8 | LOS A | 0.1 | 0.5 | 0.18 | 0.55 | 0.18 | 49.9 |
| 9 R2 | 6 | 1.0 | 6 | 1.0 | 0.044 | 7.1 | LOS A | 0.1 | 0.5 | 0.18 | 0.55 | 0.18 | 52.5 |
| Approach | 62 | 1.0 | 62 | 1.0 | 0.044 | 5.9 | LOS A | 0.1 | 0.5 | 0.18 | 0.55 | 0.18 | 50.3 |
| West: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 15 | 1.0 | 15 | 1.0 | 0.105 | 6.2 | LOS A | 0.2 | 1.4 | 0.33 | 0.25 | 0.33 | 56.3 |
| 11 T1 | 91 | 1.0 | 91 | 1.0 | 0.105 | 1.2 | LOSA | 0.2 | 1.4 | 0.33 | 0.25 | 0.33 | 55.9 |
| Approach | 105 | 1.0 | 105 | 1.0 | 0.105 | 1.9 | NA | 0.2 | 1.4 | 0.33 | 0.25 | 0.33 | 56.0 |
| All Vehicles | 409 | 1.0 | $344^{\mathrm{N} 1}$ | 1.2 | 0.105 | 4.1 | NA | 0.2 | 1.4 | 0.14 | 0.44 | 0.14 | 53.2 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:46:13 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{aligned} & \text { DEMA } \\ & \text { FLOV } \\ & \text { [ Total } \\ & \text { veh/h } \end{aligned}$ | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Total veh/h | $\begin{gathered} \text { VAL } \\ \text { WS } \\ \text { HV ] } \\ \% \end{gathered}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} \text { AVER, } \\ \text { OF } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{gathered} \text { EBACK } \\ \text { EUE } \\ \text { Dist ] } \\ \mathrm{m} \end{gathered}$ | Prop. Que | EffectiveA Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| East: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $5 \quad \mathrm{~T} 1$ | 222 | 1.0 | 162 | 1.4 | 0.084 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 60.0 |
| 6 R2 | 218 | 1.0 | 159 | 1.4 | 0.087 | 5.5 | LOS A | 0.0 | 0.0 | 0.00 | 0.60 | 0.00 | 51.9 |
| Approach | 440 | 1.0 | $322{ }^{\text {N1 }}$ | 1.4 | 0.087 | 2.7 | NA | 0.0 | 0.0 | 0.00 | 0.30 | 0.00 | 55.7 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $7 \quad \mathrm{~L} 2$ | 54 | 1.0 | 43 | 1.3 | 0.052 | 5.8 | LOS A | 0.1 | 0.6 | 0.17 | 0.57 | 0.17 | 38.6 |
| 9 R2 | 22 | 1.0 | 18 | 1.3 | 0.052 | 8.2 | LOSA | 0.1 | 0.6 | 0.17 | 0.57 | 0.17 | 38.6 |
| Approach | 76 | 1.0 | $60{ }^{\text {N1 }}$ | 1.3 | 0.052 | 6.5 | LOS A | 0.1 | 0.6 | 0.17 | 0.57 | 0.17 | 38.6 |
| West: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 75 | 1.0 | 75 | 1.0 | 0.135 | 6.2 | LOS A | 0.2 | 1.7 | 0.33 | 0.39 | 0.33 | 49.7 |
| 11 T1 | 72 | 1.0 | 72 | 1.0 | 0.135 | 1.3 | LOSA | 0.2 | 1.7 | 0.33 | 0.39 | 0.33 | 49.7 |
| Approach | 146 | 1.0 | 146 | 1.0 | 0.135 | 3.8 | NA | 0.2 | 1.7 | 0.33 | 0.39 | 0.33 | 49.7 |
| All Vehicles | 662 | 1.0 | $528{ }^{\text {N1 }}$ | 1.3 | 0.135 | 3.5 | NA | 0.2 | 1.7 | 0.11 | 0.35 | 0.11 | 53.3 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:46:13 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

$\nabla$ Site: 8 [8 PM (Site Folder: Scenario 3)]

Site Category: (None)
Roundabout

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ |  | $\begin{aligned} & \text { IND } \\ & \text { WS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Total veh/h | $\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & \text { IHV] } \\ & \hline \% \end{aligned}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} \text { AVER, } \\ \text { OF } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | BACK UE Dist ] m | $\begin{aligned} & \text { Prop. } \\ & \text { Que } \end{aligned}$ | EffectiveAv Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| East: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $5 \quad$ T1 | 434 | 1.0 | 315 | 1.4 | 0.358 | 4.5 | LOS A | 0.9 | 6.7 | 0.06 | 0.55 | 0.06 | 44.7 |
| 6 R2 | 344 | 1.0 | 250 | 1.4 | 0.358 | 8.5 | LOS A | 0.9 | 6.7 | 0.06 | 0.55 | 0.06 | 44.7 |
| 6 u U | 11 | 100.0 | $11$ | $\begin{gathered} 100 . \\ 0 \end{gathered}$ | 0.358 | 11.9 | LOS A | 0.9 | 6.7 | 0.06 | 0.55 | 0.06 | 44.7 |
| Approach | 788 | 2.3 | $576{ }^{\text {N1 }}$ | 3.2 | 0.358 | 6.3 | LOS A | 0.9 | 6.7 | 0.06 | 0.55 | 0.06 | 44.7 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 108 | 1.0 | 101 | 1.1 | 0.093 | 4.8 | LOS A | 0.2 | 1.4 | 0.31 | 0.52 | 0.31 | 48.8 |
| 9 R2 | 9 | 1.0 | 9 | 1.1 | 0.093 | 9.1 | LOS A | 0.2 | 1.4 | 0.31 | 0.52 | 0.31 | 48.8 |
| Approach | 118 | 1.0 | $110^{\mathrm{N1}}$ | 1.1 | 0.093 | 5.1 | LOS A | 0.2 | 1.4 | 0.31 | 0.52 | 0.31 | 48.8 |
| West: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | $\begin{gathered} 16 \\ 115 \end{gathered}$ | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{gathered} 14 \\ 105 \end{gathered}$ | 1.1 | $\begin{aligned} & 0.108 \\ & 0.108 \end{aligned}$ | $\begin{aligned} & 5.7 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & \operatorname{LOS} A \\ & \operatorname{LOS} A \end{aligned}$ | $\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 50.5 \\ & 50.5 \end{aligned}$ |
| 11 T1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach | 131 | 1.0 | $120{ }^{\text {N1 }}$ |  | 0.108 | 5.9 | LOS A | 0.3 | 2.0 | 0.44 | 0.50 | 0.44 | 50.5 |
| All Vehicles | 1037 | 2.0 | $806^{\text {N1 }} 2.6$ |  | 0.358 | 6.1 | LOS A | 0.9 | 6.7 | 0.15 | 0.54 | 0.15 | 46.6 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

[^4]Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn |  | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Total veh/h | $\begin{aligned} & \text { IVAL } \\ & \text { iWS } \\ & \text { I HV ] } \end{aligned}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} \text { AVER } \\ \text { OF } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | BACK <br> EUE <br> Dist ] <br> m | Prop. Que | EffectiveAv Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 T1 | 48 | 1.0 | 38 | 1.3 | 0.028 | 0.0 | LOS A | 0.0 | 0.2 | 0.04 | 0.15 | 0.04 | 52.7 |
| 3 R2 | 17 | 1.0 | 13 | 1.3 | 0.028 | 5.5 | LOS A | 0.0 | 0.2 | 0.04 | 0.15 | 0.04 | 52.7 |
| Approach | 65 | 1.0 | $52^{\mathrm{N} 1}$ | 1.3 | 0.028 | 1.4 | NA | 0.0 | 0.2 | 0.04 | 0.15 | 0.04 | 52.7 |
| East: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 118 | 1.0 | 91 | 1.3 | 0.057 | 5.6 | LOS A | 0.1 | 0.7 | 0.07 | 0.55 | 0.07 | 50.4 |
| 6 R2 | 1 | 1.0 | 1 | 1.3 | 0.057 | 5.7 | LOSA | 0.1 | 0.7 | 0.07 | 0.55 | 0.07 | 50.4 |
| Approach | 119 | 1.0 | $92{ }^{\text {N1 }}$ | 1.3 | 0.057 | 5.6 | LOS A | 0.1 | 0.7 | 0.07 | 0.55 | 0.07 | 50.4 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $7 \quad \mathrm{~L} 2$ | 1 | 1.0 | 1 | 1.2 | 0.009 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.03 | 0.00 | 58.5 |
| 8 T1 | 21 | 1.0 | 17 | 1.2 | 0.009 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.03 | 0.00 | 58.5 |
| Approach | 22 | 1.0 | $18^{\mathrm{N} 1}$ | 1.2 | 0.009 | 0.3 | NA | 0.0 | 0.0 | 0.00 | 0.03 | 0.00 | 58.5 |
| All Vehicles | 206 | 1.0 | $161{ }^{\text {N1 }}$ | 1.3 | 0.057 | 3.7 | NA | 0.1 | 0.7 | 0.05 | 0.37 | 0.05 | 51.1 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:46:13 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn | $\begin{aligned} & \text { DEMA } \\ & \text { FLOV } \\ & \text { [ Total } \\ & \text { veh/h } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Total veh/h | $\begin{aligned} & \text { VAL } \\ & \text { WS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} \text { AVER, } \\ \text { OF } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | BACK UE Dist ] m | Prop. Que | EffectiveA Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 112 | 1.0 | 84 | 1.3 | 0.222 | 5.6 | LOS A | 0.4 | 2.6 | 0.11 | 0.57 | 0.11 | 48.5 |
| 3 R2 | 275 | 1.0 | 207 | 1.3 | 0.222 | 5.7 | LOSA | 0.4 | 2.6 | 0.11 | 0.57 | 0.11 | 48.5 |
| Approach | 386 | 1.0 | $291{ }^{\text {N1 }}$ | 1.3 | 0.222 | 5.7 | LOS A | 0.4 | 2.6 | 0.11 | 0.57 | 0.11 | 48.5 |
| East: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 60 | 1.0 | 52 | 1.2 | 0.039 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.42 | 0.00 | 55.6 |
| $5 \quad$ T1 | 24 | 1.0 | 21 | 1.2 | 0.039 | 0.0 | LOSA | 0.0 | 0.0 | 0.00 | 0.42 | 0.00 | 55.6 |
| Approach | 84 | 1.0 | $73{ }^{\text {N1 }}$ | 1.2 | 0.039 | 4.0 | NA | 0.0 | 0.0 | 0.00 | 0.42 | 0.00 | 55.6 |
| West: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 T1 | 6 | 1.0 | 5 | 1.2 | 0.004 | 0.1 | LOS A | 0.0 | 0.0 | 0.09 | 0.15 | 0.09 | 56.7 |
| 12 R 2 | 2 | 1.0 | 2 | 1.2 | 0.004 | 5.7 | LOSA | 0.0 | 0.0 | 0.09 | 0.15 | 0.09 | 56.7 |
| Approach | 8 | 1.0 | $7^{\text {N1 }}$ | 1.2 | 0.004 | 1.5 | NA | 0.0 | 0.0 | 0.09 | 0.15 | 0.09 | 56.7 |
| All Vehicles | 479 | 1.0 | $371{ }^{\text {N1 }}$ | 1.3 | 0.222 | 5.3 | NA | 0.4 | 2.6 | 0.09 | 0.53 | 0.09 | 50.8 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:46:13 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

$\nabla$ Site: 11 [11 PM (Site Folder: Scenario 3)]
마 Network: N101 [PM (Network Folder: Scenario 3 (2036+D))]
New Site
Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{gathered} \text { DEM/ } \\ \text { FLO } \\ \text { [ Total } \\ \text { veh/h } \end{gathered}$ | $\begin{aligned} & \text { ND } \\ & \text { NS ] } \\ & \% \\ & \hline \end{aligned}$ | ARRIVAL FLOWS [ Total HV ] veh/h \% |  | Deg. Satn <br> v/c | Aver. Delay <br> sec | Level of Service | AVERAGE BACK OF QUEUE [ Veh. Dist ] veh m |  | Prop. Que | EffectiveAver. No. Stop Cycles Rate |  | Aver. Speed km/h |
| South: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 1 | 1.0 | 1 | 1.2 | 0.021 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.01 | 0.00 | 57.3 |
| 2 T1 | 48 | 1.0 | 40 | 1.2 | 0.021 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.01 | 0.00 | 59.3 |
| Approach | 49 | 1.0 | $40^{\mathrm{N} 1}$ | 1.2 | 0.021 | 0.1 | NA | 0.0 | 0.0 | 0.00 | 0.01 | 0.00 | 59.2 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 T1 | 21 | 1.0 | 17 | 1.2 | 0.035 | 0.1 | LOS A | 0.1 | 0.5 | 0.12 | 0.41 | 0.12 | 54.9 |
| 9 R2 | 56 | 1.0 | 45 | 1.2 | 0.035 | 5.6 | LOS A | 0.1 | 0.5 | 0.12 | 0.41 | 0.12 | 55.1 |
| Approach | 77 | 1.0 | $62^{\mathrm{N} 1}$ | 1.2 | 0.035 | 4.1 | NA | 0.1 | 0.5 | 0.12 | 0.41 | 0.12 | 55.1 |
| West: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 34 | 1.0 | 34 | 1.0 | 0.022 | 5.7 | LOS A | 0.0 | 0.2 | 0.11 | 0.54 | 0.11 | 50.3 |
| 12 R 2 | 1 | 1.0 | 1 | 1.0 | 0.022 | 5.8 | LOS A | 0.0 | 0.2 | 0.11 | 0.54 | 0.11 | 50.3 |
| Approach | 35 | 1.0 | 35 | 1.0 | 0.022 | 5.7 | LOS A | 0.0 | 0.2 | 0.11 | 0.54 | 0.11 | 50.3 |
| All Vehicles | 161 | 1.0 | $137{ }^{\text {N1 }}$ | 1.2 | 0.035 | 3.3 | NA | 0.1 | 0.5 | 0.08 | 0.33 | 0.08 | 54.4 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP \| Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:46:13 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

B Site: 12 [12 PM (Site Folder: Scenario 3)]
마 Network: N101 [PM (Network Folder: Scenario 3 (2036+D))]

Site Category: (None)
Roundabout

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov ID |  | $\begin{gathered} \text { DEM } \\ \text { FLO } \\ \text { [ Total } \\ \text { veh/h } \end{gathered}$ | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARRI FLO [ Total veh/h | VAL NS HV ] \% | Deg. Satn <br> v/c | Aver. <br> Delay <br> sec | Level of Service | AVERA OF [ Veh. veh | BACK <br> UE <br> Dist ] <br> m | Prop. Que | EffectiveA Stop Rate | er. No. Cycles | Aver. Speed km/h |
| South: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | L2 | 1 | 1.0 | 1 | 1.0 | 0.036 | 5.5 | LOS A | 0.1 | 0.5 | 0.47 | 0.64 | 0.47 | 45.7 |
| 2 | T1 | 2 | 1.0 | 2 | 1.0 | 0.036 | 5.7 | LOS A | 0.1 | 0.5 | 0.47 | 0.64 | 0.47 | 52.1 |
| 3 | R2 | 35 | 1.0 | 35 | 1.0 | 0.036 | 10.3 | LOS A | 0.1 | 0.5 | 0.47 | 0.64 | 0.47 | 45.7 |
| Appr | ach | 38 | 1.0 | 38 | 1.0 | 0.036 | 10.0 | LOS A | 0.1 | 0.5 | 0.47 | 0.64 | 0.47 | 46.2 |
| East: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | L2 | 131 | 1.0 | 97 | 1.4 | 0.279 | 4.3 | LOS A | 0.7 | 5.0 | 0.27 | 0.48 | 0.27 | 53.7 |
| 5 | T1 | 296 | 1.0 | 219 | 1.4 | 0.279 | 4.5 | LOS A | 0.7 | 5.0 | 0.27 | 0.48 | 0.27 | 50.0 |
| 6 | R2 | 97 | 1.0 | 72 | 1.4 | 0.279 | 9.2 | LOS A | 0.7 | 5.0 | 0.27 | 0.48 | 0.27 | 55.0 |
| Appr | ach | 523 | 1.0 | $387{ }^{\text {N1 }}$ | 1.4 | 0.279 | 5.3 | LOS A | 0.7 | 5.0 | 0.27 | 0.48 | 0.27 | 52.5 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 | L2 | 67 | 1.0 | 67 | 1.0 | 0.119 | 4.5 | LOS A | 0.2 | 1.7 | 0.30 | 0.56 | 0.30 | 48.9 |
| 8 | T1 | 14 | 1.0 | 14 | 1.0 | 0.119 | 4.8 | LOS A | 0.2 | 1.7 | 0.30 | 0.56 | 0.30 | 54.3 |
| 9 | R2 | 66 | 1.0 | 66 | 1.0 | 0.119 | 9.4 | LOS A | 0.2 | 1.7 | 0.30 | 0.56 | 0.30 | 48.9 |
| Approach |  | 147 | 1.0 | 147 | 1.0 | 0.119 | 6.7 | LOS A | 0.2 | 1.7 | 0.30 | 0.56 | 0.30 | 49.7 |
| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 10 \\ & 11 \\ & 12 \end{aligned}$ | L2 | 16 | 1.0 | 15 | 1.1 | 0.090 | 4.4 | LOS A | 0.2 | 1.3 | 0.26 | 0.43 | 0.26 | 55.4 |
|  | T1 | 105 | 1.0 | 98 | 1.1 | 0.090 | 4.6 | LOS A | 0.2 | 1.3 | 0.26 | 0.43 | 0.26 | 53.8 |
|  | R2 | 1 | 1.0 | 1 | 1.1 | 0.090 | 9.2 | LOS A | 0.2 | 1.3 | 0.26 | 0.43 | 0.26 | 56.5 |
| Approach |  | 122 | 1.0 | $114{ }^{\mathrm{N} 1}$ | 1.1 | 0.090 | 4.6 | LOS A | 0.2 | 1.3 | 0.26 | 0.43 | 0.26 | 54.1 |
| All Vehicles |  | 831 | 1.0 | $686{ }^{\text {N1 }}$ |  | 0.279 | 5.8 | LOS A | 0.7 | 5.0 | 0.29 | 0.50 | 0.29 | 52.0 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

## SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:46:13 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

© Site: 13v [13 PM (Site Folder: Scenario 3)]
마 Network: N101 [PM (Network Folder: Scenario 3 (2036+D))]

Site Category: (None)
Roundabout


Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
1:46:13 PM
Project: X:\17285 Mulgoa Planning Proposal\07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4671 [2036 AM TNR - Bradley (Site Folder: Scenario 4)]

마 Network: N101 [AM (Network Folder: Scenario 4
(2036+D w-Upgrades))]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=140$ seconds (Network User-Given Cycle Time)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{array}{r} \text { DEM } \\ \text { FLO } \\ \text { [ Total } \\ \text { veh/h } \end{array}$ | ND NS HV ] \% | ARRIVAL FLOWS [ Total HV ] veh/h \% | Deg. Satn v/c | Aver. Delay sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | CK OF UE Dist] m | Prop. Que | EffectiveAv <br> Stop <br> Rate | ver No. Cycles | Aver. Speed km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 56 | 0.0 | 560.0 | 0.091 | 11.2 | LOS A | 0.8 | 7.4 | 0.22 | 0.49 | 0.22 | 58.4 |
| $2 \quad \mathrm{~T} 1$ | 2242 | 17.0 | 224217.0 | * 0.786 | 16.9 | LOS B | 31.9 | 253.9 | 0.64 | 0.59 | 0.64 | 67.7 |
| Approach | 2298 | 16.6 | 229816.6 | 0.786 | 16.8 | LOS B | 31.9 | 253.9 | 0.63 | 0.59 | 0.63 | 67.5 |
| East: U-Turn Bay |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 R2 | 1 | 0.0 | 10.0 | * 0.013 | 75.3 | LOS F | 0.1 | 0.5 | 0.97 | 0.58 | 0.97 | 34.9 |
| Approach | 1 | 0.0 | 10.0 | 0.013 | 75.3 | LOS F | 0.1 | 0.5 | 0.97 | 0.58 | 0.97 | 34.9 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 1 | 0.0 | 10.0 | 0.001 | 7.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.60 | 0.00 | 68.5 |
| 8 T1 | 1492 | 13.9 | 149213.9 | 0.375 | 5.5 | LOS A | 11.0 | 85.3 | 0.33 | 0.29 | 0.33 | 73.8 |
| 9 R2 | 320 | 0.0 | 3200.0 | 0.441 | 59.6 | LOS E | 10.2 | 71.5 | 0.92 | 0.80 | 0.92 | 42.3 |
| Approach | 1813 | 11.4 | 181311.4 | 0.441 | 15.0 | LOS B | 11.0 | 85.3 | 0.43 | 0.38 | 0.43 | 63.1 |
| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 876 | 0.0 | 8760.0 | * 0.778 | 53.9 | LOS D | 27.8 | 194.6 | 0.98 | 0.88 | 1.01 | 42.7 |
| 12 R2 | 122 | 0.0 | 1220.0 | 0.240 | 63.4 | LOS E | 3.8 | 26.4 | 0.93 | 0.75 | 0.93 | 18.6 |
| Approach | 998 | 0.0 | 9980.0 | 0.778 | 55.1 | LOS D | 27.8 | 194.6 | 0.97 | 0.87 | 1.00 | 40.7 |
| All Vehicles | 5109 | 11.5 | 510911.5 | 0.786 | 23.6 | LOS B | 31.9 | 253.9 | 0.63 | 0.57 | 0.63 | 59.1 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov ID Crossing | Dem. Flow ped/h | Aver. Delay sec | Level of Service | AVERA <br> [Ped <br> ped | $\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. $\qquad$ | Aver. Speed $\mathrm{m} / \mathrm{sec}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P12 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.3 | 36.5 | 0.40 |
| P1B Slip/ Bypass | 53 | 30.0 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 50.0 | 26.0 | 0.52 |
| East: U-Turn Bay |  |  |  |  |  |  |  |  |  |  |
| P2 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 88.1 | 31.0 | 0.35 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 97.3 | 43.0 | 0.44 |
| P32 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 93.5 | 38.0 | 0.41 |


| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 94.3 | 39.0 | 0.41 |  |
| P4B Slip/ | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 87.3 | 30.0 | 0.34 |  |
| $\quad$ Bypass |  |  |  |  |  |  |  |  |  |  |  |
| All Pedestrians | 421 | 60.0 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 86.9 | 34.9 | 0.40 |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022 3:08:58 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4850 [2036 AM TNR - Defence (Site Folder: Scenario 4)]

마 Network: N101 [AM (Network Folder: Scenario 4
(2036+D w-Upgrades))]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=140$ seconds (Network User-Given Cycle Time)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ |  | $\begin{aligned} & \text { AND } \\ & \text { WS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Tota veh/h | $\begin{aligned} & \text { IVAL } \\ & \text { WWS } \\ & 1 \mathrm{HV} \text { ] } \end{aligned}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | CK OF JE Dist] m | Prop. Que | EffectiveAv Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 51 | 0.0 | 51 | 0.0 | 0.111 | 17.1 | LOS B | 1.4 | 12.7 | 0.45 | 0.57 | 0.45 | 62.4 |
| 2 T1 | 1606 | 15.9 | 1606 | 15.9 | * 0.912 | 42.6 | LOS D | 37.6 | 295.0 | 0.87 | 0.84 | 0.95 | 46.4 |
| 3 R 2 | 11 | 0.0 | 11 | 0.0 | * 0.060 | 75.4 | LOS F | 0.7 | 5.0 | 1.00 | 0.69 | 1.00 | 36.0 |
| Approach | 1667 | 15.3 | 1667 | 15.3 | 0.912 | 42.0 | LOS C | 37.6 | 295.0 | 0.86 | 0.83 | 0.93 | 46.5 |
| East: Defence Establishment Orchard Hills |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 8 | 0.0 | 8 | 0.0 | 0.028 | 54.2 | LOS D | 0.5 | 3.7 | 0.84 | 0.66 | 0.84 | 20.5 |
| $5 \quad \mathrm{~T} 1$ | 1 | 0.0 | 1 | 0.0 | 0.028 | 49.7 | LOS D | 0.5 | 3.7 | 0.84 | 0.66 | 0.84 | 20.5 |
| 6 R2 | 25 | 0.0 | 25 | 0.0 | * 0.099 | 41.4 | LOS C | 1.2 | 8.4 | 0.89 | 0.69 | 0.89 | 23.9 |
| Approach | 35 | 0.0 | 35 | 0.0 | 0.099 | 44.8 | LOS D | 1.2 | 8.4 | 0.88 | 0.68 | 0.88 | 22.9 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 49 | 0.0 | 49 | 0.0 | 0.053 | 25.2 | LOS B | 1.7 | 11.6 | 0.53 | 0.71 | 0.53 | 47.6 |
| 8 T1 | 1302 | 15.3 | 1302 | 15.3 | 0.839 | 42.7 | LOS D | 41.4 | 322.8 | 0.98 | 0.92 | 1.03 | 36.3 |
| 9 R2 | 294 | 0.0 | 294 | 0.0 | 0.461 | 64.1 | LOS E | 9.2 | 64.7 | 0.96 | 0.81 | 0.96 | 28.6 |
| Approach | 1645 | 12.1 | 1645 | 12.1 | 0.839 | 46.0 | LOS D | 41.4 | 322.8 | 0.96 | 0.89 | 1.00 | 35.0 |
| West: Entry Boulevard |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 677 | 0.0 | 677 | 0.0 | 0.753 | 51.5 | LOS D | 26.0 | 182.1 | 0.84 | 0.99 | 0.84 | 25.3 |
| 11 T1 | 1 | 0.0 | 1 | 0.0 | * 0.753 | 25.3 | LOS B | 26.0 | 182.1 | 0.84 | 0.99 | 0.84 | 34.5 |
| 12 R 2 | 267 | 0.0 | 267 | 0.0 | 0.480 | 41.2 | LOS C | 13.8 | 96.6 | 0.85 | 0.79 | 0.85 | 21.3 |
| Approach | 945 | 0.0 | 945 | 0.0 | 0.753 | 48.6 | LOS D | 26.0 | 182.1 | 0.84 | 0.93 | 0.84 | 24.0 |
| All Vehicles | 4293 | 10.6 | 4293 | 10.6 | 0.912 | 45.0 | LOS D | 41.4 | 322.8 | 0.90 | 0.87 | 0.94 | 37.8 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{\text {ID }}^{\text {Mov }} \text { Crossing }$ | Dem. Flow ped/h | Aver. Delay sec | Level of Service | AVERA <br> [ Ped <br> ped | ACK OF Dist ] $m$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. <br> m | Aver. Speed <br> m/sec |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 93.5 | 38.0 | 0.41 |
| P12 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 91.2 | 35.0 | 0.38 |
| P1B Slip/ Bypass | 53 | 31.2 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 51.2 | 26.0 | 0.51 |
| East: Defence Establishment Orchard Hills |  |  |  |  |  |  |  |  |  |  |
| P2 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 95.0 | 40.0 | 0.42 |


| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P31 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 94.3 | 39.0 | 0.41 |
| P32 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 91.2 | 35.0 | 0.38 |
| West: Entry Boulevard |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| All Pedestrians | 368 | 59.5 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 86.9 | 35.6 | 0.41 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:08:58 PM
Project: X:\17285 Mulgoa Planning Proposal\07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4851 [2036 AM TNR - Chain-o-Ponds (Site Folder: Scenario 4)]

마 Network: N101 [AM (Network Folder: Scenario 4
(2036+D w-Upgrades))]
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=140$ seconds (Network User-Given Cycle Time)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l\|} \hline \text { Mov Turn } \\ \hline \text { ID } \end{array}$ |  | ND NS HV ] \% | ARR FLO [ Total veh/h | IVAL WS HV ] \% | Deg. Satn v/c | Aver. Delay sec | Level of Service | 95\% <br> [ Veh. veh |  | $\begin{aligned} & \text { Prop. } \\ & \text { Que } \end{aligned}$ | EffectiveA Stop Rate | ver. No. Cycles | Aver. Speed km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 46 | 0.0 | 46 | 0.0 | 0.124 | 28.3 | LOS B | 2.8 | 26.5 | 0.66 | 0.65 | 0.66 | 51.6 |
| $2 \quad \mathrm{~T} 1$ | 1111 | 15.8 | 1111 | 15.8 | * 0.664 | 40.2 | LOS C | 24.2 | 188.9 | 0.88 | 0.77 | 0.88 | 42.9 |
| Approach | 1157 | 15.1 | 1157 | 15.1 | 0.664 | 39.7 | LOS C | 24.2 | 188.9 | 0.87 | 0.76 | 0.87 | 43.1 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 T1 | 1487 | 15.3 | 1487 | 15.3 | 0.661 | 21.7 | LOS B | 37.6 | 293.7 | 0.80 | 0.73 | 0.80 | 65.1 |
| 9 R2 | 161 | 0.0 | 161 | 0.0 | 0.306 | 35.1 | LOS C | 3.5 | 24.2 | 0.94 | 0.77 | 0.94 | 47.3 |
| Approach | 1648 | 13.8 | 1648 | 13.8 | 0.661 | 23.0 | LOS B | 37.6 | 293.7 | 0.81 | 0.73 | 0.81 | 63.8 |
| West: Chain-o-Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 587 | 0.0 | 587 | 0.0 | * 0.667 | 28.3 | LOS B | 25.0 | 174.7 | 0.69 | 0.78 | 0.69 | 23.2 |
| 12 R2 | 184 | 0.0 | 184 | 0.0 | 0.327 | 45.1 | LOS D | 9.7 | 67.8 | 0.82 | 0.77 | 0.82 | 40.9 |
| Approach | 772 | 0.0 | 772 | 0.0 | 0.667 | 32.3 | LOS C | 25.0 | 174.7 | 0.72 | 0.78 | 0.72 | 30.9 |
| All Vehicles | 3577 | 11.2 | 3577 | 11.2 | 0.667 | 30.4 | LOS C | 37.6 | 293.7 | 0.81 | 0.75 | 0.81 | 53.0 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Crossing } \\ & \text { ID } \end{aligned}$ | Dem. Flow <br> ped/h | Aver. Delay <br> sec | Level of Service | $\begin{gathered} \text { AVERAC } \\ \text { Q } \\ \text { [ Ped } \\ \text { ped } \end{gathered}$ | $\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop. Que | Effective Stop Rate | Trave Time sec | Travel Dist. <br> m | Aver. <br> Speed <br> m/sec |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 29.4 | LOS C | 0.1 | 0.1 | 0.92 | 0.92 | 55.2 | 33.5 | 0.61 |
| P12 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P1B Slip/ Bypass | 53 | 30.9 | LOS D | 0.1 | 0.1 | 0.92 | 0.92 | 50.9 | 26.0 | 0.51 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P32 Stage 2 | 53 | 29.4 | LOS C | 0.1 | 0.1 | 0.92 | 0.92 | 54.1 | 32.0 | 0.59 |
| West: Chain-o-Ponds Road |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| All Pedestrians | 316 | 47.1 | LOS E | 0.2 | 0.2 | 0.94 | 0.94 | 72.7 | 33.3 | 0.46 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:08:58 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{ll} \text { Mov Turn } \\ \text { ID } \end{array}$ |  | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Tota veh/h | $\begin{gathered} \text { VAL } \\ \text { WS } \\ \text { HV ] } \\ \% \end{gathered}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | K OF JE Dist ] m | Prop. Que | Effective A Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| East: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $5 \quad \mathrm{~T} 1$ | 105 | 1.0 | 105 | 1.0 | 0.054 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 60.0 |
| 6 R2 | 47 | 1.0 | 47 | 1.0 | 0.026 | 5.5 | LOS A | 0.0 | 0.0 | 0.00 | 0.60 | 0.00 | 51.8 |
| Approach | 153 | 1.0 | 153 | 1.0 | 0.054 | 1.7 | NA | 0.0 | 0.0 | 0.00 | 0.19 | 0.00 | 57.2 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 194 | 1.0 | 194 | 1.0 | 0.140 | 5.7 | LOS A | 0.6 | 4.3 | 0.12 | 0.55 | 0.12 | 50.2 |
| 9 R2 | 16 | 1.0 | 16 | 1.0 | 0.140 | 6.7 | LOS A | 0.6 | 4.3 | 0.12 | 0.55 | 0.12 | 52.7 |
| Approach | 209 | 1.0 | 209 | 1.0 | 0.140 | 5.8 | LOS A | 0.6 | 4.3 | 0.12 | 0.55 | 0.12 | 50.5 |
| West: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 5 | 1.0 | 5 | 1.0 | 0.042 | 5.7 | LOS A | 0.2 | 1.4 | 0.16 | 0.11 | 0.16 | 57.1 |
| 11 T1 | 43 | 1.0 | 43 | 1.0 | 0.042 | 0.3 | LOS A | 0.2 | 1.4 | 0.16 | 0.11 | 0.16 | 57.5 |
| Approach | 48 | 1.0 | 48 | 1.0 | 0.042 | 0.9 | NA | 0.2 | 1.4 | 0.16 | 0.11 | 0.16 | 57.4 |
| All Vehicles | 411 | 1.0 | 411 | 1.0 | 0.140 | 3.7 | NA | 0.6 | 4.3 | 0.08 | 0.36 | 0.08 | 54.2 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:08:58 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{ll} \text { Mov Turn } \\ \text { ID } \end{array}$ |  | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Tota veh/h | $\begin{gathered} \text { VAL } \\ \text { WS } \\ \text { HV ] } \\ \% \end{gathered}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | K OF JE Dist ] m | Prop. Que | Effective A Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| East: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $5 \quad \mathrm{~T} 1$ | 74 | 1.0 | 74 | 1.0 | 0.038 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 60.0 |
| 6 R2 | 49 | 1.0 | 49 | 1.0 | 0.027 | 5.5 | LOS A | 0.0 | 0.0 | 0.00 | 0.60 | 0.00 | 51.9 |
| Approach | 123 | 1.0 | 123 | 1.0 | 0.038 | 2.2 | NA | 0.0 | 0.0 | 0.00 | 0.24 | 0.00 | 56.4 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 193 | 1.0 | 193 | 1.0 | 0.245 | 6.4 | LOS A | 1.1 | 7.8 | 0.39 | 0.63 | 0.39 | 37.4 |
| 9 R2 | 80 | 1.0 | 80 | 1.0 | 0.245 | 8.1 | LOS A | 1.1 | 7.8 | 0.39 | 0.63 | 0.39 | 37.4 |
| Approach | 273 | 1.0 | 273 | 1.0 | 0.245 | 6.9 | LOS A | 1.1 | 7.8 | 0.39 | 0.63 | 0.39 | 37.4 |
| West: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 21 | 1.0 | 21 | 1.0 | 0.210 | 5.8 | LOS A | 1.1 | 7.9 | 0.20 | 0.12 | 0.20 | 56.2 |
| 11 T1 | 218 | 1.0 | 218 | 1.0 | 0.210 | 0.4 | LOS A | 1.1 | 7.9 | 0.20 | 0.12 | 0.20 | 56.2 |
| Approach | 239 | 1.0 | 239 | 1.0 | 0.210 | 0.9 | NA | 1.1 | 7.9 | 0.20 | 0.12 | 0.20 | 56.2 |
| All Vehicles | 635 | 1.0 | 635 | 1.0 | 0.245 | 3.7 | NA | 1.1 | 7.9 | 0.24 | 0.36 | 0.24 | 49.8 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:08:58 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

B Site: 8 [8 AM (Site Folder: Scenario 4)]
마 Network: N101 [AM (Network Folder: Scenario 4 (2036+D w-Upgrades))]

Site Category: (None)
Roundabout

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{gathered} \text { AND } \\ \text { WS } \\ \text { HV ] } \\ \% \end{gathered}$ | ARR FLO [ Tota veh/h | $\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & 1 \mathrm{HV} \text { ] } \\ & \hline \% \end{aligned}$ | Deg. Satn v/c | Aver. Delay sec | Level of Service | $\begin{gathered} 95 \% \text { B } \\ \text { QU } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | K OF <br> JE <br> Dist! <br> m | Prop. Que | EffectiveA Stop Rate | ver. No. Cycles | Aver. Speed km/h |
| East: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $5 \quad$ T1 | 98 | 1.0 | 98 | 1.0 | 0.146 | 4.5 | LOS A | 0.7 | 6.0 | 0.11 | 0.55 | 0.11 | 43.8 |
| 6 R2 | 93 | 1.0 | 93 | 1.0 | 0.146 | 8.5 | LOS A | 0.7 | 6.0 | 0.11 | 0.55 | 0.11 | 43.8 |
| 6 u U | 11 | 100.0 | 11 | $\begin{gathered} 100 . \\ 0 \end{gathered}$ | 0.146 | 12.2 | LOS A | 0.7 | 6.0 | 0.11 | 0.55 | 0.11 | 43.8 |
| Approach | 201 | 6.2 | 201 | 6.2 | 0.146 | 6.8 | LOS A | 0.7 | 6.0 | 0.11 | 0.55 | 0.11 | 43.8 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 329 | 1.0 | 329 | 1.0 | 0.384 | 7.1 | LOS A | 2.5 | 17.9 | 0.66 | 0.73 | 0.66 | 46.1 |
| 9 R2 | 27 | 1.0 | 27 | 1.0 | 0.384 | 11.4 | LOS A | 2.5 | 17.9 | 0.66 | 0.73 | 0.66 | 46.1 |
| Approach | 357 | 1.0 | 357 | 1.0 | 0.384 | 7.5 | LOS A | 2.5 | 17.9 | 0.66 | 0.73 | 0.66 | 46.1 |
| West: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 19 | 1.0 | 19 | 1.0 | 0.325 | 4.9 | LOSA | 2.4 | 17.0 | 0.34 | 0.46 | 0.34 | 51.1 |
| 11 T1 | 406 | 1.0 | 406 | 1.0 | 0.325 | 5.2 | LOS A | 2.4 | 17.0 | 0.34 | 0.46 | 0.34 | 51.1 |
| Approach | 425 | 1.0 | 425 | 1.0 | 0.325 | 5.2 | LOS A | 2.4 | 17.0 | 0.34 | 0.46 | 0.34 | 51.1 |
| All Vehicles | 983 | 2.1 | 983 | 2.1 | 0.384 | 6.3 | LOS A | 2.5 | 17.9 | 0.41 | 0.58 | 0.41 | 48.3 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

## SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022 3:08:58 PM
Project: X:117285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ | $\begin{gathered} \text { DEMA } \\ \text { FLOI } \\ \text { [ Total } \\ \text { veh/h } \end{gathered}$ | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Tota veh/h | $\begin{aligned} & \text { VAL } \\ & \text { WS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | K OF JE Dist ] m | Prop. Que | Effective A Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 T1 | 29 | 1.0 | 29 | 1.0 | 0.033 | 0.1 | LOS A | 0.1 | 1.0 | 0.13 | 0.29 | 0.13 | 46.6 |
| 3 R2 | 31 | 1.0 | 31 | 1.0 | 0.033 | 5.6 | LOS A | 0.1 | 1.0 | 0.13 | 0.29 | 0.13 | 46.6 |
| Approach | 60 | 1.0 | 60 | 1.0 | 0.033 | 2.9 | NA | 0.1 | 1.0 | 0.13 | 0.29 | 0.13 | 46.6 |
| East: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 26 | 1.0 | 26 | 1.0 | 0.018 | 5.7 | LOS A | 0.1 | 0.5 | 0.13 | 0.54 | 0.13 | 50.0 |
| 6 R2 | 1 | 1.0 | 1 | 1.0 | 0.018 | 5.8 | LOS A | 0.1 | 0.5 | 0.13 | 0.54 | 0.13 | 50.0 |
| Approach | 27 | 1.0 | 27 | 1.0 | 0.018 | 5.7 | LOS A | 0.1 | 0.5 | 0.13 | 0.54 | 0.13 | 50.0 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 4 | 1.0 | 4 | 1.0 | 0.029 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.05 | 0.00 | 57.7 |
| 8 T1 | 52 | 1.0 | 52 | 1.0 | 0.029 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.05 | 0.00 | 57.7 |
| Approach | 56 | 1.0 | 56 | 1.0 | 0.029 | 0.4 | NA | 0.0 | 0.0 | 0.00 | 0.05 | 0.00 | 57.7 |
| All Vehicles | 143 | 1.0 | 143 | 1.0 | 0.033 | 2.5 | NA | 0.1 | 1.0 | 0.08 | 0.24 | 0.08 | 50.7 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:08:58 PM
Project: X:\17285 Mulgoa Planning Proposal\07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ | $\begin{gathered} \text { DEMA } \\ \text { FLOI } \\ \text { [ Total } \\ \text { veh/h } \end{gathered}$ | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Tota veh/h | $\begin{aligned} & \text { IVAL } \\ & \text { WS } \\ & 1 \mathrm{HV}] \\ & \% \end{aligned}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | K OF JE Dist ] m | Prop. Que | Effective A Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 1 | 1.0 | 1 | 1.0 | 0.058 | 5.6 | LOS A | 0.2 | 1.3 | 0.19 | 0.58 | 0.19 | 48.0 |
| 3 R2 | 66 | 1.0 | 66 | 1.0 | 0.058 | 5.9 | LOS A | 0.2 | 1.3 | 0.19 | 0.58 | 0.19 | 53.7 |
| Approach | 67 | 1.0 | 67 | 1.0 | 0.058 | 5.9 | LOS A | 0.2 | 1.3 | 0.19 | 0.58 | 0.19 | 53.7 |
| East: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 84 | 1.0 | 84 | 1.0 | 0.063 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.42 | 0.00 | 55.6 |
| $5 \quad$ T1 | 34 | 1.0 | 34 | 1.0 | 0.063 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.42 | 0.00 | 55.6 |
| Approach | 118 | 1.0 | 118 | 1.0 | 0.063 | 4.0 | NA | 0.0 | 0.0 | 0.00 | 0.42 | 0.00 | 55.6 |
| West: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 T1 | 42 | 1.0 | 42 | 1.0 | 0.026 | 0.1 | LOS A | 0.0 | 0.3 | 0.07 | 0.08 | 0.07 | 59.3 |
| 12 R 2 | 6 | 1.0 | 6 | 1.0 | 0.026 | 5.8 | LOS A | 0.0 | 0.3 | 0.07 | 0.08 | 0.07 | 58.1 |
| Approach | 48 | 1.0 | 48 | 1.0 | 0.026 | 0.8 | NA | 0.0 | 0.3 | 0.07 | 0.08 | 0.07 | 59.2 |
| All Vehicles | 234 | 1.0 | 234 | 1.0 | 0.063 | 3.9 | NA | 0.2 | 1.3 | 0.07 | 0.39 | 0.07 | 55.8 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:08:58 PM
Project: X:\17285 Mulgoa Planning Proposal\07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

$\nabla$ Site: 11 [11 AM (Site Folder: Scenario 4)]
마 Network: N101 [AM (Network Folder: Scenario 4 (2036+D w-Upgrades))]

## New Site

Site Category: (None)
Give-Way (Two-Way)


Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:08:58 PM
Project: X:\17285 Mulgoa Planning Proposal\07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

S Site: 12 [12 AM (Site Folder: Scenario 4)]
마 Network: N101 [AM (Network Folder: Scenario 4 (2036+D w-Upgrades))]

## Site Category: (None)

Roundabout

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | ND VS HV \% | ARR FLO [ Tota veh/h | $\begin{aligned} & \text { IVAL } \\ & \text { IWS } \\ & 1 \mathrm{HV} \text { ] } \\ & \hline \% \end{aligned}$ | Deg. <br> Satn <br> v/c | Aver. Delay sec | Level of Service | $\begin{gathered} 95 \% \text { Bu } \\ \text { Qu } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | Effective Av Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 1 | 1.0 | 1 | 1.0 | 0.122 | 5.1 | LOS A | 0.6 | 4.4 | 0.36 | 0.63 | 0.36 | 46.4 |
| 2 T1 | 14 | 1.0 | 14 | 1.0 | 0.122 | 5.4 | LOS A | 0.6 | 4.4 | 0.36 | 0.63 | 0.36 | 52.2 |
| 3 R 2 | 125 | 1.0 | 125 | 1.0 | 0.122 | 9.4 | LOS A | 0.6 | 4.4 | 0.36 | 0.63 | 0.36 | 46.4 |
| Approach | 140 | 1.0 | 140 | 1.0 | 0.122 | 9.0 | LOS A | 0.6 | 4.4 | 0.36 | 0.63 | 0.36 | 47.3 |
| East: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 32 | 1.0 | 32 | 1.0 | 0.135 | 4.3 | LOS A | 0.8 | 5.6 | 0.16 | 0.52 | 0.16 | 53.2 |
| $5 \quad$ T1 | 93 | 1.0 | 93 | 1.0 | 0.135 | 4.6 | LOS A | 0.8 | 5.6 | 0.16 | 0.52 | 0.16 | 49.6 |
| 6 R2 | 67 | 1.0 | 67 | 1.0 | 0.135 | 8.6 | LOS A | 0.8 | 5.6 | 0.16 | 0.52 | 0.16 | 54.1 |
| Approach | 192 | 1.0 | 192 | 1.0 | 0.135 | 6.0 | LOS A | 0.8 | 5.6 | 0.16 | 0.52 | 0.16 | 52.4 |
| North: Darug North |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 100 | 1.0 | 100 | 1.0 | 0.143 | 6.4 | LOS A | 0.8 | 5.5 | 0.55 | 0.66 | 0.55 | 48.5 |
| 8 T1 | 5 | 1.0 | 5 | 1.0 | 0.143 | 6.6 | LOS A | 0.8 | 5.5 | 0.55 | 0.66 | 0.55 | 53.7 |
| 9 R2 | 31 | 1.0 | 31 | 1.0 | 0.143 | 10.7 | LOSA | 0.8 | 5.5 | 0.55 | 0.66 | 0.55 | 48.5 |
| Approach | 136 | 1.0 | 136 | 1.0 | 0.143 | 7.3 | LOS A | 0.8 | 5.5 | 0.55 | 0.66 | 0.55 | 48.9 |
| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 66 | 1.0 | 66 | 1.0 | 0.304 | 5.4 | LOS A | 1.9 | 13.1 | 0.45 | 0.54 | 0.45 | 54.4 |
| 11 T1 | 282 | 1.0 | 282 | 1.0 | 0.304 | 5.7 | LOS A | 1.9 | 13.1 | 0.45 | 0.54 | 0.45 | 52.7 |
| 12 R 2 | 1 | 1.0 | 1 | 1.0 | 0.304 | 9.7 | LOS A | 1.9 | 13.1 | 0.45 | 0.54 | 0.45 | 55.2 |
| Approach | 349 | 1.0 | 349 | 1.0 | 0.304 | 5.7 | LOS A | 1.9 | 13.1 | 0.45 | 0.54 | 0.45 | 53.1 |
| All Vehicles | 817 | 1.0 | 817 | 1.0 | 0.304 | 6.6 | LOS A | 1.9 | 13.1 | 0.38 | 0.57 | 0.38 | 51.6 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

## SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:08:58 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

마 Network: N101 [AM (Network Folder: Scenario 4 (2036+D w-Upgrades))]

Site Category: (None)
Roundabout


Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:08:58 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4671 [2036 PM TNR - Bradley (Site Folder: Scenario 4)]
마 Network: N101 [PM (Network Folder: Scenario 4 (2036+D wUpgrades))]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=140$ seconds (Network User-Given Cycle Time)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn | $\begin{array}{r} \text { DEM } \\ \text { FLO } \\ \text { [ Total } \\ \text { veh/h } \end{array}$ | $\begin{gathered} \text { ND } \\ \text { NS } \\ \text { HV ] } \\ \% \end{gathered}$ | ARRIVAL FLOWS <br> [ Total HV ] <br> veh/h \% | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | CK OF UE Dist] m | Prop. Que | EffectiveA <br> Stop <br> Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 171 | 0.0 | 1710.0 | 0.188 | 14.3 | LOS A | 3.8 | 29.8 | 0.38 | 0.64 | 0.38 | 55.9 |
| 2 T1 | 1944 | 17.0 | 194417.0 | * 0.824 | 41.0 | LOS C | 40.9 | 324.9 | 0.97 | 0.90 | 0.99 | 55.6 |
| Approach | 2115 | 15.6 | 211515.6 | 0.824 | 38.8 | LOS C | 40.9 | 324.9 | 0.92 | 0.88 | 0.94 | 55.6 |
| East: U-Turn Bay |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 R2 | 1 | 0.0 | 10.0 | 0.004 | 59.7 | LOS E | 0.1 | 0.4 | 0.88 | 0.59 | 0.88 | 39.2 |
| Approach | 1 | 0.0 | 10.0 | 0.004 | 59.7 | LOS E | 0.1 | 0.4 | 0.88 | 0.59 | 0.88 | 39.2 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |
| $7 \quad$ L2 | 1 | 0.0 | 10.0 | 0.001 | 7.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.60 | 0.00 | 68.5 |
| 8 T1 | 2765 | 14.7 | 276514.7 | 0.709 | 42.4 | LOS C | 32.8 | 256.7 | 0.50 | 0.47 | 0.50 | 70.9 |
| 9 R2 | 784 | 0.0 | 7840.0 | * 0.804 | 59.4 | LOS E | 27.7 | 193.8 | 0.98 | 0.88 | 1.01 | 42.5 |
| Approach | 3551 | 11.5 | 355111.5 | 0.804 | 46.2 | LOS D | 32.8 | 256.7 | 0.61 | 0.56 | 0.61 | 59.7 |
| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 406 | 0.0 | 4060.0 | 0.389 | 48.3 | LOS D | 11.2 | 78.2 | 0.86 | 0.79 | 0.86 | 44.4 |
| 12 R2 | 56 | 0.0 | $56 \quad 0.0$ | * 0.110 | 62.0 | LOS E | 1.7 | 11.8 | 0.91 | 0.71 | 0.91 | 18.9 |
| Approach | 462 | 0.0 | 4620.0 | 0.389 | 49.9 | LOS D | 11.2 | 78.2 | 0.86 | 0.78 | 0.86 | 42.2 |
| All Vehicles | 6128 | 12.0 | 612812.0 | 0.824 | 43.9 | LOS D | 40.9 | 324.9 | 0.74 | 0.69 | 0.75 | 56.2 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov ID Crossing | Dem. Flow ped/h | Aver. Delay sec | Level of Service | AVERA <br> [ Ped ped | $\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. m | Aver. Speed |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P12 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.3 | 36.5 | 0.40 |
| P1B Slip/ Bypass | 53 | 29.3 | LOS C | 0.1 | 0.1 | 0.92 | 0.92 | 49.3 | 26.0 | 0.53 |
| East: U-Turn Bay |  |  |  |  |  |  |  |  |  |  |
| P2 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 88.1 | 31.0 | 0.35 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 97.3 | 43.0 | 0.44 |
| P32 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 93.5 | 38.0 | 0.41 |


| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 94.3 | 39.0 | 0.41 |  |
| P4B Slip/ | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 87.3 | 30.0 | 0.34 |  |
| $\quad$ Bypass |  |  |  |  |  |  |  |  |  |  |  |
| All Pedestrians | 421 | 59.9 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 86.8 | 34.9 | 0.40 |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022 3:09:51 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4850 [2036 PM TNR - Defence (Site Folder: Scenario 4)]
마 Network: N101 [PM (Network Folder: Scenario 4 (2036+D wUpgrades))]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=140$ seconds (Network User-Given Cycle Time)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | ND VS HV \% | ARR FLO [ Tota veh/h | IVAL WS HV ] \% | Deg. Satn v/c | Aver. Delay sec | Level of Service | $\begin{gathered} 95 \% \text { Bu } \\ \text { Qu } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | Effective Av Stop Rate | er. No. Cycles | Aver. Speed km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 156 | 0.0 | 156 | 0.0 | 0.173 | 13.3 | LOS A | 4.9 | 39.6 | 0.48 | 0.67 | 0.48 | 64.6 |
| 2 T1 | 1894 | 15.7 | 1894 | 15.7 | 0.909 | 58.2 | LOS E | 51.2 | 402.3 | 0.99 | 0.95 | 1.05 | 37.7 |
| 3 R 2 | 2 | 0.0 | 2 | 0.0 | 0.012 | 62.5 | LOS E | 0.1 | 0.8 | 0.83 | 0.62 | 0.83 | 39.1 |
| Approach | 2052 | 14.5 | 2052 | 14.5 | 0.909 | 54.8 | LOS D | 51.2 | 402.3 | 0.95 | 0.93 | 1.01 | 38.8 |
| East: Defence Establishment Orchard Hills |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 16 | 0.0 | 16 | 0.0 | 0.043 | 51.0 | LOS D | 0.9 | 6.3 | 0.82 | 0.68 | 0.82 | 21.2 |
| $5 \quad$ T1 | 1 | 0.0 | 1 | 0.0 | 0.043 | 46.5 | LOS D | 0.9 | 6.3 | 0.82 | 0.68 | 0.82 | 21.2 |
| 6 R2 | 55 | 0.0 | 55 | 0.0 | 0.207 | 58.1 | LOS E | 3.3 | 23.2 | 0.90 | 0.72 | 0.90 | 19.8 |
| Approach | 72 | 0.0 | 72 | 0.0 | 0.207 | 56.3 | LOS D | 3.3 | 23.2 | 0.88 | 0.71 | 0.88 | 20.1 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 18 | 0.0 | 18 | 0.0 | 0.015 | 15.2 | LOS B | 0.4 | 2.8 | 0.35 | 0.67 | 0.35 | 53.0 |
| 8 T1 | 1940 | 15.1 | 1940 | 15.1 | * 0.929 | 31.9 | LOS C | 62.4 | 487.7 | 0.87 | 0.89 | 0.97 | 42.2 |
| 9 R2 | 832 | 0.0 | 832 | 0.0 | 0.922 | 81.5 | LOS F | 33.3 | 233.0 | 1.00 | 0.97 | 1.28 | 24.4 |
| Approach | 2789 | 10.5 | 2789 | 10.5 | 0.929 | 46.6 | LOS D | 62.4 | 487.7 | 0.91 | 0.91 | 1.06 | 34.7 |
| West: Entry Boulevard |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 260 | 0.0 | 260 | 0.0 | 0.358 | 36.3 | LOS C | 10.9 | 76.6 | 0.68 | 0.82 | 0.68 | 25.2 |
| 11 T1 | 1 | 0.0 | 1 | 0.0 | * 0.358 | 25.5 | LOS B | 10.9 | 76.6 | 0.68 | 0.82 | 0.68 | 34.5 |
| 12 R2 | 127 | 0.0 | 127 | 0.0 | * 0.502 | 62.9 | LOS E | 8.0 | 55.9 | 0.96 | 0.87 | 0.96 | 16.4 |
| Approach | 388 | 0.0 | 388 | 0.0 | 0.502 | 45.0 | LOS D | 10.9 | 76.6 | 0.77 | 0.83 | 0.77 | 21.5 |
| All Vehicles | 5301 | 11.1 | 5301 | 11.1 | 0.929 | 49.8 | LOS D | 62.4 | 487.7 | 0.91 | 0.91 | 1.02 | 35.5 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Crossing } \\ & \text { ID } \end{aligned}$ | Dem. Flow ped/h | Aver. Delay sec | Level of Service | AVERA <br> [ Ped <br> ped | $\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist ] } \\ & \mathrm{m} \end{aligned}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. m | Aver. Speed <br> $\mathrm{m} / \mathrm{sec}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 93.5 | 38.0 | 0.41 |
| P12 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 91.2 | 35.0 | 0.38 |
| P1B Slip/ <br> Bypass | 53 | 29.4 | LOS C | 0.1 | 0.1 | 0.92 | 0.92 | 49.4 | 26.0 | 0.53 |
| East: Defence Establishment Orchard Hills |  |  |  |  |  |  |  |  |  |  |
| P2 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 95.0 | 40.0 | 0.42 |


| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P31 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 94.3 | 39.0 | 0.41 |
| P32 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 91.2 | 35.0 | 0.38 |
| West: Entry Boulevard |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| All Pedestrians | 368 | 59.3 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 86.7 | 35.6 | 0.41 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:09:51 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

Site: 4851 [2036 PM TNR - Chain-o-Ponds (Site Folder: Scenario 4)]

마 Network: N101 [PM (Network Folder: Scenario 4 (2036+D wUpgrades))]

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time $=140$ seconds (Network User-Given Cycle Time)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ | $\begin{array}{r} \text { DEM } \\ \text { FLO } \\ \text { [ Total } \\ \text { veh/h } \end{array}$ | $\begin{aligned} & \text { AND } \\ & \text { WS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Tota veh/h | $\begin{aligned} & \text { IVAL } \\ & \text { ows } \\ & 1 \mathrm{HV} \text { ] } \\ & \% \% \end{aligned}$ | Deg. Satn <br> v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | CK OF UE Dist] m | Prop. Que | EffectiveA <br> Stop <br> Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 122 | 0.0 | 122 | 0.0 | 0.148 | 15.4 | LOS B | 3.3 | 27.2 | 0.42 | 0.63 | 0.42 | 62.5 |
| 2 T1 | 1905 | 14.8 | 1905 | 14.8 | * 0.854 | 34.2 | LOS C | 47.5 | 370.4 | 0.86 | 0.82 | 0.90 | 46.3 |
| Approach | 2027 | 13.9 | 2027 | 13.9 | 0.854 | 33.1 | LOS C | 47.5 | 370.4 | 0.84 | 0.81 | 0.87 | 47.0 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 T1 | 1376 | 15.4 | 1376 | 15.4 | 0.460 | 0.9 | LOS A | 3.2 | 25.1 | 0.07 | 0.06 | 0.07 | 79.3 |
| 9 R2 | 699 | 0.0 | 699 | 0.0 | * 0.851 | 63.4 | LOS E | 31.1 | 217.5 | 0.99 | 0.88 | 1.04 | 35.6 |
| Approach | 2075 | 10.2 | 2075 | 10.2 | 0.851 | 21.9 | LOS B | 31.1 | 217.5 | 0.38 | 0.34 | 0.40 | 62.9 |
| West: Chain-o-Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 189 | 0.0 | 189 | 0.0 | 0.240 | 37.1 | LOS C | 8.2 | 57.3 | 0.68 | 0.74 | 0.68 | 20.1 |
| 12 R 2 | 57 | 0.0 | 57 | 0.0 | * 0.303 | 69.1 | LOS E | 3.7 | 25.9 | 0.97 | 0.75 | 0.97 | 33.9 |
| Approach | 246 | 0.0 | 246 | 0.0 | 0.303 | 44.5 | LOS D | 8.2 | 57.3 | 0.75 | 0.74 | 0.75 | 26.1 |
| All Vehicles | 4348 | 11.4 | 4348 | 11.4 | 0.854 | 28.4 | LOS B | 47.5 | 370.4 | 0.61 | 0.58 | 0.64 | 54.7 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

| Pedestrian Movement Performance |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov ID Crossing | Dem. Flow $\mathrm{ped} / \mathrm{h}$ | Aver. Delay sec | Level of Service | AVERA <br> ${ }^{[ } \mathrm{Ped}$ | $\begin{aligned} & \text { ACK OF } \\ & \text { E } \\ & \text { Dist ] } \\ & \mathrm{m} \end{aligned}$ | Prop. Que | Effective Stop Rate | Travel Time sec | Travel Dist. <br> m | Aver. Speed <br> $\mathrm{m} / \mathrm{sec}$ |
| South: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P11 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 90.0 | 33.5 | 0.37 |
| P12 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P1B Slip/ Bypass | 53 | 29.5 | LOS C | 0.1 | 0.1 | 0.92 | 0.92 | 49.5 | 26.0 | 0.53 |
| North: The Northern Road |  |  |  |  |  |  |  |  |  |  |
| P31 Stage 1 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| P32 Stage 2 | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 88.9 | 32.0 | 0.36 |
| West: Chain-o-Ponds Road |  |  |  |  |  |  |  |  |  |  |
| P4 Full | 53 | 64.3 | LOS F | 0.2 | 0.2 | 0.96 | 0.96 | 92.0 | 36.0 | 0.39 |
| All Pedestrians | 316 | 58.5 | LOS E | 0.2 | 0.2 | 0.95 | 0.95 | 84.1 | 33.3 | 0.40 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:09:51 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn | $\begin{array}{r} \text { DEM } \\ \text { FLO } \\ \text { [ Total } \\ \text { veh/h } \end{array}$ | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Tota veh/h | $\begin{gathered} \text { VAL } \\ \text { WS } \\ \text { HV ] } \\ \% \end{gathered}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \mathrm{m} \end{gathered}$ | Prop. Que | EffectiveA Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| East: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $5 \quad \mathrm{~T} 1$ | 34 | 1.0 | 34 | 1.0 | 0.017 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 60.0 |
| 6 R2 | 208 | 1.0 | 208 | 1.0 | 0.113 | 5.5 | LOS A | 0.0 | 0.0 | 0.00 | 0.60 | 0.00 | 51.8 |
| Approach | 242 | 1.0 | 242 | 1.0 | 0.113 | 4.7 | NA | 0.0 | 0.0 | 0.00 | 0.52 | 0.00 | 52.8 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 56 | 1.0 | 56 | 1.0 | 0.045 | 5.8 | LOS A | 0.2 | 1.3 | 0.18 | 0.55 | 0.18 | 49.9 |
| 9 R2 | 6 | 1.0 | 6 | 1.0 | 0.045 | 7.5 | LOS A | 0.2 | 1.3 | 0.18 | 0.55 | 0.18 | 52.5 |
| Approach | 62 | 1.0 | 62 | 1.0 | 0.045 | 6.0 | LOS A | 0.2 | 1.3 | 0.18 | 0.55 | 0.18 | 50.3 |
| West: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 15 | 1.0 | 15 | 1.0 | 0.114 | 6.5 | LOS A | 0.5 | 3.7 | 0.40 | 0.31 | 0.40 | 56.0 |
| 11 T1 | 91 | 1.0 | 91 | 1.0 | 0.114 | 1.7 | LOS A | 0.5 | 3.7 | 0.40 | 0.31 | 0.40 | 55.4 |
| Approach | 105 | 1.0 | 105 | 1.0 | 0.114 | 2.3 | NA | 0.5 | 3.7 | 0.40 | 0.31 | 0.40 | 55.6 |
| All Vehicles | 409 | 1.0 | 409 | 1.0 | 0.114 | 4.3 | NA | 0.5 | 3.7 | 0.13 | 0.47 | 0.13 | 53.0 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:09:51 PM
Project: X:\17285 Mulgoa Planning Proposal\07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn | $\begin{aligned} & \text { DEMA } \\ & \text { FLOV } \\ & \text { [ Total } \\ & \text { veh/h } \end{aligned}$ | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Tota veh/h | $\begin{gathered} \text { VAL } \\ \text { WS } \\ \text { HV ] } \\ \% \end{gathered}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | CK OF UE Dist ] m | Prop. Que | EffectiveA Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| East: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $5 \quad \mathrm{~T} 1$ | 222 | 1.0 | 222 | 1.0 | 0.115 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 59.9 |
| 6 R2 | 218 | 1.0 | 218 | 1.0 | 0.118 | 5.5 | LOS A | 0.0 | 0.0 | 0.00 | 0.60 | 0.00 | 51.8 |
| Approach | 440 | 1.0 | 440 | 1.0 | 0.118 | 2.7 | NA | 0.0 | 0.0 | 0.00 | 0.30 | 0.00 | 55.6 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 54 | 1.0 | 54 | 1.0 | 0.071 | 5.8 | LOS A | 0.3 | 2.0 | 0.17 | 0.57 | 0.17 | 37.9 |
| 9 R2 | 22 | 1.0 | 22 | 1.0 | 0.071 | 9.4 | LOS A | 0.3 | 2.0 | 0.17 | 0.57 | 0.17 | 37.9 |
| Approach | 76 | 1.0 | 76 | 1.0 | 0.071 | 6.8 | LOS A | 0.3 | 2.0 | 0.17 | 0.57 | 0.17 | 37.9 |
| West: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 75 | 1.0 | 75 | 1.0 | 0.146 | 6.5 | LOS A | 0.7 | 4.6 | 0.39 | 0.44 | 0.39 | 49.2 |
| 11 T1 | 72 | 1.0 | 72 | 1.0 | 0.146 | 1.8 | LOS A | 0.7 | 4.6 | 0.39 | 0.44 | 0.39 | 49.2 |
| Approach | 146 | 1.0 | 146 | 1.0 | 0.146 | 4.2 | NA | 0.7 | 4.6 | 0.39 | 0.44 | 0.39 | 49.2 |
| All Vehicles | 662 | 1.0 | 662 | 1.0 | 0.146 | 3.5 | NA | 0.7 | 4.6 | 0.11 | 0.36 | 0.11 | 53.4 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:09:51 PM
Project: X:\17285 Mulgoa Planning Proposal\07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

B Site: 8 [8 PM (Site Folder: Scenario 4)]
맴 Network: N101 [PM (Network Folder: Scenario 4 (2036+D wUpgrades))]

Site Category: (None)
Roundabout

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ |  |  | ARR FLO <br> [ Tota veh/h | IVAL WS IHV ] \% | Deg. Satn v/c | Aver. Delay sec | Level of Service | 95\% <br> [ Veh veh |  | Prop. Que | EffectiveA Stop Rate | ver. No. Cycles | Aver Speed km/h |
| East: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 T1 | 434 | 1.0 | 434 | 1.0 | 0.483 | 4.5 | LOSA | 3.8 | 27.7 | 0.07 | 0.54 | 0.07 | 44.7 |
| 6 R2 | 344 | 1.0 | 344 | 1.0 | 0.483 | 8.5 | LOS A | 3.8 | 27.7 | 0.07 | 0.54 | 0.07 | 44.7 |
| 6 u U | 11 | 100.0 | 11 | $\begin{gathered} 100 . \\ 0 \end{gathered}$ | 0.483 | 11.9 | LOS A | 3.8 | 27.7 | 0.07 | 0.54 | 0.07 | 44.7 |
| Approach | 788 | 2.3 | 788 | 2.3 | 0.483 | 6.3 | LOS A | 3.8 | 27.7 | 0.07 | 0.54 | 0.07 | 44.7 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 108 | 1.0 | 108 | 1.0 | 0.100 | 4.9 | LOS A | 0.6 | 3.9 | 0.33 | 0.53 | 0.33 | 48.7 |
| 9 R2 | 9 | 1.0 | 9 | 1.0 | 0.100 | 9.1 | LOS A | 0.6 | 3.9 | 0.33 | 0.53 | 0.33 | 48.7 |
| Approach | 118 | 1.0 | 118 | 1.0 | 0.100 | 5.2 | LOSA | 0.6 | 3.9 | 0.33 | 0.53 | 0.33 | 48.7 |
| West: Chain o Ponds Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 16 | 1.0 | 16 | 1.0 | 0.125 | 6.4 | LOS A | 0.9 | 6.2 | 0.52 | 0.53 | 0.52 | 49.9 |
| 11 T1 | 115 | 1.0 | 115 | 1.0 | 0.125 | 6.7 | LOS A | 0.9 | 6.2 | 0.52 | 0.53 | 0.52 | 49.9 |
| Approach | 131 | 1.0 | 131 | 1.0 | 0.125 | 6.7 | LOS A | 0.9 | 6.2 | 0.52 | 0.53 | 0.52 | 49.9 |
| All Vehicles | 1037 | 2.0 | 1037 | 2.0 | 0.483 | 6.2 | LOS A | 3.8 | 27.7 | 0.16 | 0.54 | 0.16 | 46.2 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

## SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022 3:09:51 PM
Project: X:117285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ | $\begin{aligned} & \text { DEMA } \\ & \text { FLOV } \\ & \text { [ Total } \\ & \text { veh/h } \end{aligned}$ | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Tota veh/h | $\begin{aligned} & \text { VAL } \\ & \text { WS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | K OF JE Dist ] m | Prop. Que | Effective A Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 T1 | 48 | 1.0 | 48 | 1.0 | 0.035 | 0.0 | LOS A | 0.1 | 0.6 | 0.04 | 0.15 | 0.04 | 52.6 |
| 3 R2 | 17 | 1.0 | 17 | 1.0 | 0.035 | 5.5 | LOS A | 0.1 | 0.6 | 0.04 | 0.15 | 0.04 | 52.6 |
| Approach | 65 | 1.0 | 65 | 1.0 | 0.035 | 1.4 | NA | 0.1 | 0.6 | 0.04 | 0.15 | 0.04 | 52.6 |
| East: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 118 | 1.0 | 118 | 1.0 | 0.075 | 5.6 | LOS A | 0.3 | 2.2 | 0.08 | 0.55 | 0.08 | 50.3 |
| 6 R2 | 1 | 1.0 | 1 | 1.0 | 0.075 | 5.8 | LOS A | 0.3 | 2.2 | 0.08 | 0.55 | 0.08 | 50.3 |
| Approach | 119 | 1.0 | 119 | 1.0 | 0.075 | 5.6 | LOS A | 0.3 | 2.2 | 0.08 | 0.55 | 0.08 | 50.3 |
| North: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 1 | 1.0 | 1 | 1.0 | 0.011 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.03 | 0.00 | 58.5 |
| 8 T1 | 21 | 1.0 | 21 | 1.0 | 0.011 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.03 | 0.00 | 58.5 |
| Approach | 22 | 1.0 | 22 | 1.0 | 0.011 | 0.3 | NA | 0.0 | 0.0 | 0.00 | 0.03 | 0.00 | 58.5 |
| All Vehicles | 206 | 1.0 | 206 | 1.0 | 0.075 | 3.7 | NA | 0.3 | 2.2 | 0.06 | 0.37 | 0.06 | 51.0 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:09:51 PM
Project: X:\17285 Mulgoa Planning Proposal\07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

Site Category: (None)
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ | $\begin{gathered} \text { DEMA } \\ \text { FLOI } \\ \text { [ Total } \\ \text { veh/h } \end{gathered}$ | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | ARR FLO [ Tota veh/h | $\begin{aligned} & \text { VAL } \\ & \text { WS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | K OF JE Dist ] m | Prop. Que | Effective A Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 112 | 1.0 | 112 | 1.0 | 0.296 | 5.6 | LOS A | 1.3 | 9.2 | 0.13 | 0.57 | 0.13 | 48.3 |
| 3 R2 | 275 | 1.0 | 275 | 1.0 | 0.296 | 5.8 | LOS A | 1.3 | 9.2 | 0.13 | 0.57 | 0.13 | 53.9 |
| Approach | 386 | 1.0 | 386 | 1.0 | 0.296 | 5.7 | LOS A | 1.3 | 9.2 | 0.13 | 0.57 | 0.13 | 53.2 |
| East: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 60 | 1.0 | 60 | 1.0 | 0.045 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.42 | 0.00 | 55.6 |
| $5 \quad$ T1 | 24 | 1.0 | 24 | 1.0 | 0.045 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.42 | 0.00 | 55.6 |
| Approach | 84 | 1.0 | 84 | 1.0 | 0.045 | 4.0 | NA | 0.0 | 0.0 | 0.00 | 0.42 | 0.00 | 55.6 |
| West: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 T1 | 6 | 1.0 | 6 | 1.0 | 0.005 | 0.1 | LOS A | 0.0 | 0.1 | 0.09 | 0.15 | 0.09 | 58.7 |
| 12 R 2 | 2 | 1.0 | 2 | 1.0 | 0.005 | 5.7 | LOS A | 0.0 | 0.1 | 0.09 | 0.15 | 0.09 | 56.7 |
| Approach | 8 | 1.0 | 8 | 1.0 | 0.005 | 1.5 | NA | 0.0 | 0.1 | 0.09 | 0.15 | 0.09 | 58.5 |
| All Vehicles | 479 | 1.0 | 479 | 1.0 | 0.296 | 5.3 | NA | 1.3 | 9.2 | 0.11 | 0.53 | 0.11 | 53.6 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:09:51 PM
Project: X:\17285 Mulgoa Planning Proposal\07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

$\nabla$ Site: 11 [11 PM (Site Folder: Scenario 4)]
Network: N101 [PM (Network
Folder: Scenario $4(2036+D$ w-
Upgrades) $]$

## New Site

Site Category: (None)
Give-Way (Two-Way)


Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:09:51 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

S Site: 12 [12 PM (Site Folder: Scenario 4)]

## 마 Network: N101 [PM (Network Folder: Scenario 4 (2036+D wUpgrades))]

## Site Category: (None)

Roundabout


Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

## SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:09:51 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

## MOVEMENT SUMMARY

(7) Site: 13v [13 PM (Site Folder: Scenario 4)]

## 마 Network: N101 [PM (Network Folder: Scenario 4 (2036+D wUpgrades))]

## Site Category: (None)

Roundabout

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \\ & \hline \end{aligned}$ | ARR FLO [ Tota veh/h | VAL WS HV ] \% | Deg. Satn v/c | Aver. Delay sec | Level of Service |  | $\begin{gathered} \text { K OF } \\ \text { JE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | EffectiveA Stop Rate | ver. No. Cycles | Aver. Speed <br> km/h |
| South: RoadName |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 73 | 1.0 | 73 | 1.0 | 0.331 | 13.5 | LOS A | 3.0 | 21.4 | 1.00 | 0.87 | 1.00 | 45.9 |
| 2 T1 | 14 | 1.0 | 14 | 1.0 | 0.331 | 13.8 | LOS A | 3.0 | 21.4 | 1.00 | 0.87 | 1.00 | 50.3 |
| 3 R2 | 87 | 1.0 | 87 | 1.0 | 0.331 | 17.8 | LOS B | 3.0 | 21.4 | 1.00 | 0.87 | 1.00 | 45.9 |
| Approach | 174 | 1.0 | 174 | 1.0 | 0.331 | 15.7 | LOS B | 3.0 | 21.4 | 1.00 | 0.87 | 1.00 | 46.4 |
| East: Entry Boulevard |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 124 | 1.0 | 124 | 1.0 | 0.810 | 8.0 | LOS A | 12.6 | 89.1 | 0.66 | 0.64 | 0.72 | 52.9 |
| $5 \quad \mathrm{~T} 1$ | 741 | 1.0 | 741 | 1.0 | 0.810 | 8.3 | LOSA | 12.6 | 89.1 | 0.66 | 0.64 | 0.72 | 44.7 |
| 6 R2 | 121 | 1.0 | 121 | 1.0 | 0.810 | 12.3 | LOSA | 12.6 | 89.1 | 0.66 | 0.64 | 0.72 | 51.7 |
| Approach | 986 | 1.0 | 986 | 1.0 | 0.810 | 8.8 | LOS A | 12.6 | 89.1 | 0.66 | 0.64 | 0.72 | 47.9 |
| North: Riverflat |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 1 | 1.0 | 1 | 1.0 | 0.125 | 6.9 | LOS A | 0.8 | 5.4 | 0.62 | 0.66 | 0.62 | 47.0 |
| 8 T1 | 76 | 1.0 | 76 | 1.0 | 0.125 | 7.2 | LOS A | 0.8 | 5.4 | 0.62 | 0.66 | 0.62 | 54.2 |
| 9 R2 | 33 | 1.0 | 33 | 1.0 | 0.125 | 11.2 | LOSA | 0.8 | 5.4 | 0.62 | 0.66 | 0.62 | 47.0 |
| Approach | 109 | 1.0 | 109 | 1.0 | 0.125 | 8.4 | LOS A | 0.8 | 5.4 | 0.62 | 0.66 | 0.62 | 53.0 |
| West: Bradley Street |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 37 | 1.0 | 37 | 1.0 | 0.344 | 5.8 | LOS A | 2.6 | 18.4 | 0.55 | 0.59 | 0.55 | 52.2 |
| 11 T1 | 267 | 1.0 | 267 | 1.0 | 0.344 | 6.2 | LOS A | 2.6 | 18.4 | 0.55 | 0.59 | 0.55 | 47.9 |
| 12 R 2 | 72 | 1.0 | 72 | 1.0 | 0.344 | 10.2 | LOSA | 2.6 | 18.4 | 0.55 | 0.59 | 0.55 | 54.6 |
| Approach | 376 | 1.0 | 376 | 1.0 | 0.344 | 6.9 | LOS A | 2.6 | 18.4 | 0.55 | 0.59 | 0.55 | 50.6 |
| All Vehicles | 1645 | 1.0 | 1645 | 1.0 | 0.810 | 9.1 | LOS A | 12.6 | 89.1 | 0.67 | 0.66 | 0.70 | 48.8 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

## SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
3:09:51 PM
Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9
transport planning

## Appendix B

## Recommended Intersection Upgrades




The Transport Pla nning Pa rtnership
Suite 402 Level 4, 22 Atchison Street
St Leonards NSW 2065
P.O. Box 237

St Leonards NSW 1590

0284377800
info@ttpp.net.au
www.ttpp.net.au


[^0]:    Source: Mirvac (12 April 2022)

[^1]:    Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
    Pedestrian movement LOS values are based on average delay per pedestrian movement.
    Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

[^2]:    Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
    Pedestrian movement LOS values are based on average delay per pedestrian movement.
    Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

[^3]:    Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

[^4]:    SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
    Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Processed: Wednesday, April 13, 2022
    1:46:13 PM
    Project: X:\17285 Mulgoa Planning Proposall07 Modelling Files\2022\17285-2036-220412. (3-int)sip9.sip9

